Pregunta
upstudy study bank question image url

Graph the quadratic \( y=4 x^{2}+3 x-8 \). What is the vertex of this quadratic? (f point) \( (0,-8) \) \( (-1.838,0) \) \( (1.088,0) \) \( (-0.375,-8.563) \)

Ask by Young Gordon. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertex of the quadratic \( y = 4x^{2} + 3x - 8 \) is at \( (-0.375, -8.563) \).

Solución

To find the vertex of the quadratic function \( y = 4x^{2} + 3x - 8 \), we'll use the vertex formula for a parabola. ### Step 1: Identify the coefficients The general form of a quadratic equation is: \[ y = ax^{2} + bx + c \] For the given equation: - \( a = 4 \) - \( b = 3 \) - \( c = -8 \) ### Step 2: Find the x-coordinate of the vertex The x-coordinate of the vertex (\( h \)) can be found using: \[ h = -\frac{b}{2a} \] Plugging in the values: \[ h = -\frac{3}{2 \times 4} = -\frac{3}{8} = -0.375 \] ### Step 3: Find the y-coordinate of the vertex Substitute \( x = -0.375 \) back into the original equation to find the y-coordinate (\( k \)): \[ \begin{align*} y &= 4(-0.375)^{2} + 3(-0.375) - 8 \\ &= 4(0.140625) - 1.125 - 8 \\ &= 0.5625 - 1.125 - 8 \\ &= -8.5625 \end{align*} \] Rounding to three decimal places: \[ k \approx -8.563 \] ### Conclusion The vertex of the quadratic function \( y = 4x^{2} + 3x - 8 \) is: \[ \boxed{\,(-0.375,\ -8.563)\,} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vertex of the quadratic function \( y = 4x^{2} + 3x - 8 \), we can use the vertex formula \( x = -\frac{b}{2a} \). Here, \( a = 4 \) and \( b = 3 \). Substituting these values gives us \( x = -\frac{3}{2 \cdot 4} = -\frac{3}{8} \). Plugging this value of \( x \) back into the equation yields the vertex's y-coordinate. The vertex can be represented as the point where the parabola reaches its maximum or minimum value. For this quadratic, since the coefficient of \( x^2 \) (which is 4) is positive, the parabola opens upwards. Thus, the vertex represents the minimum point of the graph. You can plug in various x-values to confirm the shape of the parabola and get a better idea of its behavior. In addition to finding the vertex, it's essential to understand where the graph intersects the x-axis, which will help you sketch it accurately. The quadratic formula can help you find these x-intercepts, giving you a more complete picture of the graph's behavior.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad