Find the exact value of \( \cos 45^{\circ} \) \( \cos 45^{\circ}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The exact value of \( \cos 45^{\circ} \) is \( \frac{\sqrt{2}}{2} \). This is derived from the properties of a 45-45-90 triangle, where both the legs are equal, and the hypotenuse can be expressed in terms of these legs. Specifically, if each leg has a length of \( 1 \), the hypotenuse is \( \sqrt{1^2 + 1^2} = \sqrt{2} \), leading to the cosine ratio. Using the unit circle, the coordinate for \( 45^{\circ} \) (or \( \frac{\pi}{4} \) radians) is \( \left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \). Therefore, \( \cos 45^{\circ} \), which corresponds to the x-coordinate, is indeed \( \frac{\sqrt{2}}{2} \).