Use partial fraction dec \( \int \frac{6 v-55}{9 v^{2}-9 v-40} d v= \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle this integral, begin by factoring the denominator. The quadratic \(9v^2 - 9v - 40\) factors into \((3v + 8)(3v - 5)\). This allows us to express \(\frac{6v - 55}{9v^2 - 9v - 40}\) in terms of partial fractions: \[ \frac{6v - 55}{(3v + 8)(3v - 5)} = \frac{A}{3v + 8} + \frac{B}{3v - 5} \] To find \(A\) and \(B\), multiply through by the denominator and solve for coefficients. Once you have \(A\) and \(B\), you can integrate each term separately. Completing the integration will yield the solution to the original integral. This method not only reveals the beauty of calculus but also showcases how algebraic manipulation can simplify complex expressions into manageable components.