\( 1 \leftarrow \quad \) Compute \( \langle-3,3,-6\rangle \cdot\langle 1,4,-6\rangle \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To compute the dot product of the vectors \(\langle -3, 3, -6 \rangle\) and \(\langle 1, 4, -6 \rangle\), we apply the formula for the dot product: \[ \langle a_1, a_2, a_3 \rangle \cdot \langle b_1, b_2, b_3 \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3 \] Plugging in the values: \[ (-3) \cdot 1 + 3 \cdot 4 + (-6) \cdot (-6) = -3 + 12 + 36 \] Now we simplify this: \[ -3 + 12 + 36 = 9 + 36 = 45 \] Thus, the dot product \(\langle -3, 3, -6 \rangle \cdot \langle 1, 4, -6 \rangle\) is \( \boxed{45} \). This dot product tells us how much one vector extends in the direction of the other: a positive result here indicates they are pointing roughly in the same direction.