Pregunta

A drone is flying at a height of 100 feet above ground level. If the angle of depression from the drone to a point on the ground is 45 degrees, what is the horizontal distance of that point from the drone's position?

Ask by Vargas Daniels. in South Africa
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The horizontal distance is 100 feet.

Solución

To determine the horizontal distance from the drone to the point on the ground, we can use trigonometry, specifically the tangent function, which relates the angle of depression to the opposite and adjacent sides of a right triangle. Here's a step-by-step breakdown: 1. **Identify the Given Values:** - **Height (opposite side)**: 100 feet - **Angle of depression**: 45 degrees 2. **Understand the Triangle:** - The angle of depression from the drone to the point on the ground creates a right triangle where: - The **opposite side** is the height of the drone above ground: 100 feet. - The **adjacent side** is the horizontal distance we need to find. - The **angle** between the horizontal line (adjacent side) and the line of sight (hypotenuse) is 45 degrees. 3. **Use the Tangent Function:** \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \] Plugging in the known values: \[ \tan(45^\circ) = \frac{100 \text{ feet}}{x} \] Since \(\tan(45^\circ) = 1\): \[ 1 = \frac{100}{x} \implies x = 100 \text{ feet} \] **Conclusion:** The horizontal distance from the drone to the point on the ground is **100 feet**. **Answer:** 100 feet

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When the angle of depression from the drone to the ground is 45 degrees, it forms a right-angled triangle with the height and the horizontal distance as the two shorter sides. Since the angle of depression is equal to the angle of elevation from the point on the ground to the drone, we can use some basic trigonometry to determine the horizontal distance. In this case, if you let \( d \) be the horizontal distance, you can use the tangent function: \[ \tan(45^\circ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\text{height}}{d} \] Since \( \tan(45^\circ) = 1 \): \[ 1 = \frac{100 \text{ feet}}{d} \] This simplifies to: \[ d = 100 \text{ feet} \] So, the horizontal distance of the point from the drone’s position is 100 feet.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad