Pregunta

If event A has a probability of \( 0.5 \) and event B has a probability of \( 0.3 \), what is the probability that both events occur?

Ask by Davison Montgomery. in Lebanon
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

If events A and B are independent, the probability that both occur is 0.15 (15%).

Solución

To determine the probability that **both** events \( A \) and \( B \) occur, we need to consider whether the events are **independent** or **dependent**. ### 1. **Independent Events** **Definition:** Two events are independent if the occurrence of one does not affect the probability of the other occurring. **Calculation:** If \( A \) and \( B \) are independent, the probability that both occur is the product of their individual probabilities: \[ P(A \text{ and } B) = P(A) \times P(B) \] **Given:** \[ P(A) = 0.5 \\ P(B) = 0.3 \] **So:** \[ P(A \text{ and } B) = 0.5 \times 0.3 = 0.15 \] **Therefore, if \( A \) and \( B \) are independent, the probability that both occur is **0.15** (or 15%). ### 2. **Dependent Events** If \( A \) and \( B \) are **dependent**, the occurrence of one affects the probability of the other. In this case, additional information is needed to determine the exact probability. Specifically, you would need to know either: - **Conditional Probability:** \( P(B|A) \) (the probability of \( B \) occurring given that \( A \) has occurred), or - **Joint Probability:** Directly provided \( P(A \text{ and } B) \). **Without this information**, we cannot accurately calculate \( P(A \text{ and } B) \) for dependent events. ### **Conclusion** - **If \( A \) and \( B \) are independent:** \( P(A \text{ and } B) = 0.15 \) (15%) - **If \( A \) and \( B \) are dependent:** Additional information is required to determine \( P(A \text{ and } B) \). --- **Assuming Independence**, the probability that both events occur is: \[ P(A \text{ and } B) = 0.5 \times 0.3 = 0.15 \quad \text{(15%)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that both events A and B occur, you need to multiply their individual probabilities. Assuming A and B are independent, the calculation would be: \[ P(A \cap B) = P(A) \times P(B) = 0.5 \times 0.3 = 0.15. \] So, the probability that both events occur is \( 0.15 \) or 15%. To visualize this, think about a deck of cards. If drawing one card represents event A (placing the card back each time for independence) and drawing another card represents event B, the likelihood of both drawing a heart and drawing a diamond still resembles the multiplication of the two probabilities! It’s a great way to conceptualize independent events in a fun, relatable scenario!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad