Pregunta
upstudy study bank question image url

Given the function \( f(x)=x^{3} \), analyze the changes in the graph to determine which statement best describes the graph of \( g(x)=-\frac{1}{2} f(x) \). (1 point) The graph will undergo a vertical stretch because \( 0<|a|<1 \). The graph will undergo a reflection due to the negative sign, and a vertical compression because \( 0<|a|<1 \). The graph will undergo a reflection due to the negative sign, and a vertical stretch because \( |a|>1 \). The graph will only undergo a reflection due to the negative sign.

Ask by Hobbs Marshall. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph will undergo a reflection over the x-axis and a vertical compression by a factor of \( \frac{1}{2} \).

Solución

The correct statement is: **The graph will undergo a reflection due to the negative sign, and a vertical compression because \( 0 < |a| < 1 \).** **Explanation:** - The negative sign in \( g(x) = -\frac{1}{2}f(x) \) causes a reflection over the x-axis. - The coefficient \( \frac{1}{2} \) (where \( 0 < |\frac{1}{2}| < 1 \)) results in a vertical compression of the graph by a factor of \( \frac{1}{2} \). **Answer:** The graph will undergo a reflection due to the negative sign, and a vertical compression because \( 0<|a|<1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The function \( g(x)=-\frac{1}{2} f(x) \) does indeed reflect the original function \( f(x)=x^{3} \) across the x-axis due to the negative sign. Additionally, the \(-\frac{1}{2}\) factor indicates a vertical compression because the absolute value of \( a \) (which is \( \frac{1}{2} \)) is less than 1. Thus, the changes to the graph can be summarized as a reflection across the x-axis and a vertical compression, making the second statement the best choice. Whenever you encounter transformations of functions, remember that negative coefficients flip the graph over the x-axis. If you find a coefficient between 0 and 1, think of it as squeezing the graph vertically rather than stretching it. This principle applies universally across many types of functions, so it’s worth keeping in mind for your future explorations in math! For further enrichment, consider delving into the transformation of different types of functions such as quadratic or trigonometric. Understanding how shifts, stretches, and reflections work across various forms will deepen your comprehension of graph behavior!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad