Responder
**a) Simplifications:**
- **i)** \( \left(m + \frac{1}{m}\right)\left(m^{2} - 1 + \frac{1}{m^{2}}\right) = m^{3} + \frac{1}{m^{3}} \)
- **ii)** \( \left(m + \frac{1}{m}\right)^{2} = m^{2} + 2 + \frac{1}{m^{2}} \)
**b) Given \( m + \frac{1}{m} = 2 \):**
- **i)** \( m^{2} + \frac{1}{m^{2}} = 2 \)
- **ii)** \( m^{3} + \frac{1}{m^{3}} = 2 \)
Solución
Let's solve each part of the problem step-by-step.
---
### **Problem 5**
**a) Simplify:**
**i) \( \left(m + \frac{1}{m}\right)\left(m^{2} - 1 + \frac{1}{m^{2}}\right) \)**
To simplify the expression, we'll expand the product by multiplying each term in the first parenthesis with each term in the second parenthesis:
\[
\begin{align*}
\left(m + \frac{1}{m}\right)\left(m^{2} - 1 + \frac{1}{m^{2}}\right) &= m \cdot m^{2} + m \cdot (-1) + m \cdot \frac{1}{m^{2}} \\
&\quad + \frac{1}{m} \cdot m^{2} + \frac{1}{m} \cdot (-1) + \frac{1}{m} \cdot \frac{1}{m^{2}} \\
&= m^{3} - m + \frac{1}{m} + m - \frac{1}{m} + \frac{1}{m^{3}}.
\end{align*}
\]
Now, combine like terms:
\[
m^{3} - m + m + \frac{1}{m} - \frac{1}{m} + \frac{1}{m^{3}} = m^{3} + \frac{1}{m^{3}}.
\]
**Answer:**
\[
\left(m + \frac{1}{m}\right)\left(m^{2} - 1 + \frac{1}{m^{2}}\right) = m^{3} + \frac{1}{m^{3}}.
\]
---
**ii) \( \left(m + \frac{1}{m}\right)^{2} \)**
To simplify the square of a binomial, use the formula \((a + b)^2 = a^2 + 2ab + b^2\):
\[
\begin{align*}
\left(m + \frac{1}{m}\right)^{2} &= m^{2} + 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^{2}} \\
&= m^{2} + 2 + \frac{1}{m^{2}}.
\end{align*}
\]
**Answer:**
\[
\left(m + \frac{1}{m}\right)^{2} = m^{2} + 2 + \frac{1}{m^{2}}.
\]
---
**b) Given that \( m + \frac{1}{m} = 2 \), calculate the value of:**
**i) \( m^{2} + \frac{1}{m^{2}} \)**
Start with the square of \( m + \frac{1}{m} \):
\[
\begin{align*}
\left(m + \frac{1}{m}\right)^{2} &= m^{2} + 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^{2}} \\
&= m^{2} + 2 + \frac{1}{m^{2}}.
\end{align*}
\]
Given that \( m + \frac{1}{m} = 2 \), square both sides:
\[
2^{2} = m^{2} + 2 + \frac{1}{m^{2}} \\
4 = m^{2} + 2 + \frac{1}{m^{2}}.
\]
Subtract 2 from both sides to find \( m^{2} + \frac{1}{m^{2}} \):
\[
4 - 2 = m^{2} + \frac{1}{m^{2}} \\
2 = m^{2} + \frac{1}{m^{2}}.
\]
**Answer:**
\[
m^{2} + \frac{1}{m^{2}} = 2.
\]
---
**ii) \( m^{3} + \frac{1}{m^{3}} \)**
To find \( m^{3} + \frac{1}{m^{3}} \), use the identity:
\[
\left(m + \frac{1}{m}\right)^{3} = m^{3} + 3m + 3\cdot\frac{1}{m} + \frac{1}{m^{3}}.
\]
Rearrange to solve for \( m^{3} + \frac{1}{m^{3}} \):
\[
m^{3} + \frac{1}{m^{3}} = \left(m + \frac{1}{m}\right)^{3} - 3\left(m + \frac{1}{m}\right).
\]
Given \( m + \frac{1}{m} = 2 \):
\[
m^{3} + \frac{1}{m^{3}} = 2^{3} - 3 \cdot 2 = 8 - 6 = 2.
\]
**Alternatively**, since \( m + \frac{1}{m} = 2 \), solve for \( m \):
Multiply both sides by \( m \):
\[
m^{2} + 1 = 2m \\
m^{2} - 2m + 1 = 0 \\
(m - 1)^{2} = 0 \\
m = 1.
\]
Then,
\[
m^{3} + \frac{1}{m^{3}} = 1^{3} + \frac{1}{1^{3}} = 1 + 1 = 2.
\]
**Answer:**
\[
m^{3} + \frac{1}{m^{3}} = 2.
\]
---
### **Final Summary**
**a) Simplifications:**
- **i)** \(\left(m + \dfrac{1}{m}\right)\left(m^{2} - 1 + \dfrac{1}{m^{2}}\right) = m^{3} + \dfrac{1}{m^{3}}\)
- **ii)** \(\left(m + \dfrac{1}{m}\right)^{2} = m^{2} + 2 + \dfrac{1}{m^{2}}\)
**b) Given \( m + \dfrac{1}{m} = 2 \):**
- **i)** \(m^{2} + \dfrac{1}{m^{2}} = 2\)
- **ii)** \(m^{3} + \dfrac{1}{m^{3}} = 2\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución