Pregunta
upstudy study bank question image url

0.4) \( \frac{2 \tan (x+180) \cdot \cos (720-x)}{\cos \left(450^{\circ}+x\right)}+1 \)

Ask by Hills Nunez. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression simplifies to \(-1\).

Solución

Let's simplify the given trigonometric expression step by step: \[ \frac{2 \tan (x + 180^\circ) \cdot \cos (720^\circ - x)}{\cos (450^\circ + x)} + 1 \] ### Step 1: Simplify Each Trigonometric Function 1. **Simplify \(\tan(x + 180^\circ)\):** The tangent function has a period of \(180^\circ\), meaning: \[ \tan(x + 180^\circ) = \tan(x) \] 2. **Simplify \(\cos(720^\circ - x)\):** The cosine function has a period of \(360^\circ\), so: \[ \cos(720^\circ - x) = \cos(-x) = \cos(x) \] (Recall that \(\cos(-x) = \cos(x)\) because cosine is an even function.) 3. **Simplify \(\cos(450^\circ + x)\):** Break down \(450^\circ\) into \(360^\circ + 90^\circ\): \[ \cos(450^\circ + x) = \cos(90^\circ + x) \] Using the cosine addition formula: \[ \cos(90^\circ + x) = \cos(90^\circ)\cos(x) - \sin(90^\circ)\sin(x) = 0 - 1 \cdot \sin(x) = -\sin(x) \] ### Step 2: Substitute Simplified Functions Back into the Expression \[ \frac{2 \tan(x) \cdot \cos(x)}{-\sin(x)} + 1 \] ### Step 3: Simplify the Fraction 1. **Express \(\tan(x)\) in terms of \(\sin(x)\) and \(\cos(x)\):** \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \] 2. **Substitute \(\tan(x)\) back into the expression:** \[ \frac{2 \cdot \frac{\sin(x)}{\cos(x)} \cdot \cos(x)}{-\sin(x)} + 1 = \frac{2 \sin(x)}{-\sin(x)} + 1 \] 3. **Simplify the fraction:** \[ \frac{2 \sin(x)}{-\sin(x)} = -2 \] 4. **Add the constant term:** \[ -2 + 1 = -1 \] ### Final Answer The expression simplifies to: \[ -1 \] **Note:** This simplification holds for all values of \(x\) where \(\sin(x) \neq 0\), as division by zero is undefined.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's simplify the expression step by step. 1. **Simplifying \( \tan(x + 180^\circ) \)**: \[ \tan(x + 180^\circ) = \tan(x) \] because tangent has a period of \(180^\circ\). 2. **Simplifying \( \cos(720^\circ - x) \)**: \[ \cos(720^\circ - x) = \cos(-x) = \cos(x) \] since cosine is an even function and \(720^\circ\) is effectively \(0^\circ\) to \(360^\circ\) rotations. 3. **Simplifying \( \cos(450^\circ + x) \)**: \[ \cos(450^\circ + x) = \cos(90^\circ + x) = -\sin(x) \] because \(450^\circ\) is beyond a full rotation, and \(90^\circ + x\) is the angle we need to convert. Now substituting these simplifications back into the original expression: \[ \frac{2 \tan(x) \cdot \cos(x)}{-\sin(x)} + 1 \] This can be further simplified: \[ \frac{-2 \tan(x) \cdot \cos(x)}{\sin(x)} + 1 \] Using \( \tan(x) = \frac{\sin(x)}{\cos(x)}\), we can substitute \( \tan(x) \): \[ \frac{-2 \cdot \frac{\sin(x)}{\cos(x)} \cdot \cos(x)}{\sin(x)} + 1 \] This simplifies to: \[ \frac{-2 \sin(x)}{\sin(x)} + 1 \] For \( \sin(x) \neq 0 \): \[ -2 + 1 = -1 \] Thus, if \(\sin(x) \neq 0\), the final result is: \[ \boxed{-1} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad