0.4) \( \frac{2 \tan (x+180) \cdot \cos (720-x)}{\cos \left(450^{\circ}+x\right)}+1 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
First, let's simplify the expression step by step. 1. **Simplifying \( \tan(x + 180^\circ) \)**: \[ \tan(x + 180^\circ) = \tan(x) \] because tangent has a period of \(180^\circ\). 2. **Simplifying \( \cos(720^\circ - x) \)**: \[ \cos(720^\circ - x) = \cos(-x) = \cos(x) \] since cosine is an even function and \(720^\circ\) is effectively \(0^\circ\) to \(360^\circ\) rotations. 3. **Simplifying \( \cos(450^\circ + x) \)**: \[ \cos(450^\circ + x) = \cos(90^\circ + x) = -\sin(x) \] because \(450^\circ\) is beyond a full rotation, and \(90^\circ + x\) is the angle we need to convert. Now substituting these simplifications back into the original expression: \[ \frac{2 \tan(x) \cdot \cos(x)}{-\sin(x)} + 1 \] This can be further simplified: \[ \frac{-2 \tan(x) \cdot \cos(x)}{\sin(x)} + 1 \] Using \( \tan(x) = \frac{\sin(x)}{\cos(x)}\), we can substitute \( \tan(x) \): \[ \frac{-2 \cdot \frac{\sin(x)}{\cos(x)} \cdot \cos(x)}{\sin(x)} + 1 \] This simplifies to: \[ \frac{-2 \sin(x)}{\sin(x)} + 1 \] For \( \sin(x) \neq 0 \): \[ -2 + 1 = -1 \] Thus, if \(\sin(x) \neq 0\), the final result is: \[ \boxed{-1} \]