Pregunta
upstudy study bank question image url

Consider a uniform distribution from \( \mathrm{a}=5 \) to \( \mathrm{b}=25 \). (a) Find the probability that \( x \) lies between 6 and 15 . (b) Find the probability that \( x \) lies between 11 and 24 . (c) Find the probability that \( x \) lies between 9 and 23 . (d) Find the probability that \( x \) lies between 7 and 16 . Click the icon to see the definition of the uniform distribution. (a) The probability that \( x \) lies between 6 and 15 is (Round to three decimal places as needed.)

Ask by Gardner Elliott. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( x \) lies between 6 and 15 is 0.450.

Solución

To find the probability that \( x \) lies between 6 and 15 in a uniform distribution from \( a = 5 \) to \( b = 25 \), follow these steps: ### Understanding the Uniform Distribution In a uniform distribution over the interval \([a, b]\): - **Probability Density Function (PDF):** \[ f(x) = \frac{1}{b - a} \quad \text{for } a \leq x \leq b \] - **Probability of \( x \) lying between \( c \) and \( d \):** \[ P(c \leq x \leq d) = \frac{d - c}{b - a} \] ### Applying to the Given Problem Given: - \( a = 5 \) - \( b = 25 \) - We want to find \( P(6 \leq x \leq 15) \) Using the formula for probability: \[ P(6 \leq x \leq 15) = \frac{15 - 6}{25 - 5} = \frac{9}{20} = 0.45 \] ### Final Answer Rounded to three decimal places: \[ P(6 \leq x \leq 15) = \boxed{0.450} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The probability \( P(x) \) for a uniform distribution can be calculated using the formula: \[ P(x \text{ between } a \text{ and } b) = \frac{\text{Length of the interval}}{\text{Total length of distribution}} \] Here, the total length of the distribution is \( b - a = 25 - 5 = 20 \). (a) For \( x \) lying between 6 and 15, the length of the interval is \( 15 - 6 = 9 \). Thus, \[ P(6 < x < 15) = \frac{9}{20} = 0.450 \] So the probability that \( x \) lies between 6 and 15 is \( 0.450 \) (rounded to three decimal places). Now let’s calculate the remaining probabilities: (b) For \( x \) lying between 11 and 24, the length of the interval is \( 24 - 11 = 13 \). The probability is: \[ P(11 < x < 24) = \frac{13}{20} = 0.650 \] (c) For \( x \) lying between 9 and 23, the length of the interval is \( 23 - 9 = 14 \). The probability is: \[ P(9 < x < 23) = \frac{14}{20} = 0.700 \] (d) For \( x \) lying between 7 and 16, the length of the interval is \( 16 - 7 = 9 \). The probability is: \[ P(7 < x < 16) = \frac{9}{20} = 0.450 \] In summary: (a) \( 0.450 \) (b) \( 0.650 \) (c) \( 0.700 \) (d) \( 0.450 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad