Pregunta
upstudy study bank question image url

Senem is auditing the tax returns of individuals in three zip codes. Thus far, \( 93.1 \% \) of the audited tax returns have passed the audit. If Senem takes 15 tax returns, what is the probability that at most 14 returns will pass the audit? - Round your answer to 3 decimal places.

Ask by Cox Hardy. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that at most 14 out of 15 tax returns will pass the audit is 0.658.

Solución

To determine the probability that at most 14 out of 15 tax returns will pass the audit, we can use the **binomial probability** model. Here's a step-by-step breakdown: 1. **Parameters:** - **Probability of success (passing the audit), \( p \):** 93.1% or 0.931 - **Number of trials, \( n \):** 15 - **Number of successes, \( k \):** At most 14 2. **Understanding "At Most 14":** - This means we need to calculate the probability of having **0 to 14** passes. - Mathematically, this is \( P(X \leq 14) \). 3. **Complement Rule:** - Instead of calculating \( P(X \leq 14) \) directly, it's easier to use the complement rule: \[ P(X \leq 14) = 1 - P(X = 15) \] - Here, \( P(X = 15) \) is the probability that **all 15** tax returns pass the audit. 4. **Calculating \( P(X = 15) \):** - Using the binomial probability formula: \[ P(X = 15) = p^{15} = 0.931^{15} \] - Calculating \( 0.931^{15} \) gives approximately **0.342**. 5. **Final Calculation:** - Substituting back: \[ P(X \leq 14) = 1 - 0.342 = 0.658 \] **Rounded to three decimal places, the probability is 0.658.** **Answer:** 0.658

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, we can use the binomial probability formula. The probability of exactly \( k \) successes (returns passing the audit) in \( n \) trials (total returns audited) can be calculated as: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where: - \( n = 15 \) (the total number of returns), - \( k \) is the number of successes ranging from 0 to 14, - \( p = 0.931 \) (the probability of a return passing the audit), - \( \binom{n}{k} \) is the binomial coefficient. We need to calculate the probability that at most 14 returns will pass the audit, which means we need to find: \[ P(X \leq 14) = P(X = 0) + P(X = 1) + ... + P(X = 14) \] This can be simplified since: \[ P(X \leq 14) = 1 - P(X = 15) \] Now, let's compute \( P(X = 15) \): \[ P(X = 15) = \binom{15}{15} (0.931)^{15} (1 - 0.931)^{0} \] Calculating this: \[ P(X = 15) = 1 \times (0.931)^{15} \times 1 = (0.931)^{15} \approx 0.397 \] Now, we can find \( P(X \leq 14) \): \[ P(X \leq 14) = 1 - P(X = 15) \approx 1 - 0.397 \approx 0.603 \] Thus, rounding to three decimal places, the probability that at most 14 returns will pass the audit is: \[ \boxed{0.603} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad