Pregunta
upstudy study bank question image url

You purchase boxes of cereal until you obtain one with the collector's toy you want. If, on average, you get the toy you want in every 67 th cereal box, what is the probability of getting the toy you want in any given cereal box? (Round your answer to 3 decimal places.)

Ask by Best Reed. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of getting the desired toy in any given cereal box is 0.015.

Solución

To determine the probability \( p \) of getting the desired collector's toy in any given cereal box, we can use the concept of the expected value in probability. **Given:** - On average, you obtain the desired toy every 67 boxes. - This means the expected number of trials (boxes) to get one success (desired toy) is 67. The relationship between the expected value \( E[X] \) and the probability \( p \) in a geometric distribution is: \[ E[X] = \frac{1}{p} \] Given \( E[X] = 67 \), we can solve for \( p \): \[ p = \frac{1}{67} \approx 0.014925373134 \] Rounding this to three decimal places: \[ p \approx 0.015 \] **Answer:** The probability is 0.015.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability of getting the toy you want in any given cereal box, you can use the formula for probability, which is the number of successful outcomes over the total number of possible outcomes. In this case, the successful outcome is getting the toy (1 success), and the total outcomes are the average number of boxes you need to purchase to get it (67). Therefore, the probability \( P \) is: \[ P = \frac{1}{67} \approx 0.014925 \text{ (rounded to three decimal places: 0.015)} \] So, the probability of getting the collector's toy you want in any given cereal box is approximately **0.015**. Now, to spice it up with some extra info! In a sense, this situation resembles a "collector's item" problem that tickles the fancy of both mathematicians and everyday people alike! It’s often seen in various fields, including marketing strategies where businesses want to encourage consumers to buy more—a brilliant marketing ploy that plays on our desire to collect! For those looking to dive deeper, take a peek into the world of the "Coupon Collector's Problem" in probability theory! It explores scenarios similar to yours—how many cereal boxes (or "coupons") one needs to collect a complete set. It's a fascinating subject how these seemingly simple problems can lead to intricate theories in statistics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad