Pregunta
upstudy study bank question image url

Andrea and Carter are going on a picnic. To prepare for the picnic, Andrea buys 4 bags of granola and 3 bags of dried fruit and spends \( \$ 51.50 \). Carter buys 2 bags of granola and 4 bags of dried fruit and spends \( \$ 45.50 \). A. Write and solve a system of equations to determine the cost of a bag of granola and the cost of a bag of dried fruit. What is the cost of a bag of granola? What is the cost of a bag of dried fruit? Wher

Ask by West Haynes. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A bag of granola costs \$6.95 and a bag of dried fruit costs \$7.90.

Solución

Let's solve the problem step by step to determine the cost of a bag of granola and a bag of dried fruit. ### **Step 1: Define the Variables** - Let \( g \) represent the cost of one bag of granola (in dollars). - Let \( f \) represent the cost of one bag of dried fruit (in dollars). ### **Step 2: Translate the Problem into a System of Equations** From the information provided: 1. **Andrea's Purchase:** - 4 bags of granola and 3 bags of dried fruit cost \$51.50. \[ 4g + 3f = 51.50 \quad \text{(Equation 1)} \] 2. **Carter's Purchase:** - 2 bags of granola and 4 bags of dried fruit cost \$45.50. \[ 2g + 4f = 45.50 \quad \text{(Equation 2)} \] ### **Step 3: Solve the System of Equations** We'll use the **Elimination Method** to solve the system. **a. Align the Equations:** \[ \begin{cases} 4g + 3f = 51.50 \quad \text{(Equation 1)} \\ 2g + 4f = 45.50 \quad \text{(Equation 2)} \end{cases} \] **b. Make the Coefficients of \( g \) the Same:** Multiply **Equation 2** by 2 to match the coefficient of \( g \) in **Equation 1**. \[ 2 \times (2g + 4f) = 2 \times 45.50 \] \[ 4g + 8f = 91.00 \quad \text{(Equation 3)} \] **c. Subtract Equation 1 from Equation 3:** \[ (4g + 8f) - (4g + 3f) = 91.00 - 51.50 \] \[ 4g - 4g + 8f - 3f = 39.50 \] \[ 5f = 39.50 \] **d. Solve for \( f \):** \[ f = \frac{39.50}{5} = 7.90 \] So, **one bag of dried fruit costs \$7.90**. **e. Substitute \( f \) back into Equation 1 to find \( g \):** \[ 4g + 3(7.90) = 51.50 \] \[ 4g + 23.70 = 51.50 \] \[ 4g = 51.50 - 23.70 \] \[ 4g = 27.80 \] \[ g = \frac{27.80}{4} = 6.95 \] So, **one bag of granola costs \$6.95**. ### **Conclusion** - **Cost of a bag of granola (\( g \)):** \$6.95 - **Cost of a bag of dried fruit (\( f \)):** \$7.90

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's first create the equations based on the problem: Let \( g \) be the cost of a bag of granola and \( d \) be the cost of a bag of dried fruit. From Andrea's purchase, we have: 1. \( 4g + 3d = 51.50 \) From Carter's purchase, we have: 2. \( 2g + 4d = 45.50 \) To solve this system of equations, we can utilize substitution or elimination. Here, we'll use elimination. First, we can multiply the second equation by 2 to align the coefficients of \( g \): \( 4g + 8d = 91.00 \) (new equation from Carter) Now we can subtract Andrea's equation from this new equation: \[ (4g + 8d) - (4g + 3d) = 91.00 - 51.50 \] This simplifies to: \[ 5d = 39.50 \] Dividing both sides by 5 gives: \[ d = 7.90 \] Now that we have \( d \), we can substitute it back into one of the original equations to solve for \( g \). Let's use Andrea's equation: \[ 4g + 3(7.90) = 51.50 \] This simplifies to: \[ 4g + 23.70 = 51.50 \] Subtracting 23.70 from both sides: \[ 4g = 27.80 \] Dividing by 4 gives: \[ g = 6.95 \] So the cost of a bag of granola is \( \$6.95 \) and the cost of a bag of dried fruit is \( \$7.90 \). Now grab your picnic basket and enjoy those snacks! 🥳🍎

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad