Pregunta
upstudy study bank question image url

Find the solution to the system by the addition (elimination) method. Check your answers. \( \begin{array}{ll}2 s+5 t=12 & \text { (1) } \\ 7 s-10 t=31 & \text { (2) }\end{array} \) What is the solution to the system?

Ask by Jimenez Rojas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system is \( s = 5 \) and \( t = \frac{2}{5} \).

Solución

To solve the system of equations using the **elimination (addition) method**, follow these steps: Given the system: \[ \begin{cases} 2s + 5t = 12 \quad \text{(1)} \\ 7s - 10t = 31 \quad \text{(2)} \end{cases} \] **Step 1: Align the equations for elimination.** We aim to eliminate one of the variables by making their coefficients equal in magnitude. Let's eliminate \( t \) by finding the least common multiple (LCM) of the coefficients of \( t \) in both equations. - The coefficients of \( t \) are 5 and -10. - The LCM of 5 and 10 is 10. **Step 2: Multiply the equations to make the coefficients of \( t \) equal.** - Multiply equation (1) by 2 to make the coefficient of \( t \) equal to 10: \[ 2(2s + 5t) = 2 \times 12 \implies 4s + 10t = 24 \quad \text{(3)} \] - Keep equation (2) as is: \[ 7s - 10t = 31 \quad \text{(2)} \] **Step 3: Add equations (3) and (2) to eliminate \( t \).** \[ (4s + 10t) + (7s - 10t) = 24 + 31 \\ 11s = 55 \\ s = \frac{55}{11} = 5 \] **Step 4: Substitute \( s = 5 \) back into one of the original equations to solve for \( t \).** Using equation (1): \[ 2(5) + 5t = 12 \\ 10 + 5t = 12 \\ 5t = 2 \\ t = \frac{2}{5} \] **Step 5: Check the solution in the second equation.** \[ 7(5) - 10\left(\frac{2}{5}\right) = 35 - 4 = 31 \] This satisfies equation (2), confirming that the solution is correct. **Final Solution:** \[ \boxed{\left( s, t \right) = \left( 5,\ \dfrac{2}{5} \right)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the system using the elimination method, we'll manipulate the equations so that we can eliminate one variable. Starting with the equations: 1) \( 2s + 5t = 12 \) 2) \( 7s - 10t = 31 \) First, we can multiply the first equation by 2 to line up the coefficients of \( t \): \[ 4s + 10t = 24 \quad \text{(3)} \] Now we can add this new equation (3) to equation (2): \[ (4s + 10t) + (7s - 10t) = 24 + 31 \] \[ 11s = 55 \] Now, divide both sides by 11: \[ s = 5 \] Next, substitute \( s = 5 \) back into equation (1) to find \( t \): \[ 2(5) + 5t = 12 \] \[ 10 + 5t = 12 \] \[ 5t = 2 \] \[ t = \frac{2}{5} \] Thus, the solution to the system is \( s = 5 \) and \( t = \frac{2}{5} \). To verify, substitute \( s \) and \( t \) back into both original equations: For equation (1): \[ 2(5) + 5\left(\frac{2}{5}\right) = 10 + 2 = 12 \quad \text{(correct)} \] For equation (2): \[ 7(5) - 10\left(\frac{2}{5}\right) = 35 - 4 = 31 \quad \text{(correct)} \] Hence, the solution to the system is: \[ (s, t) = \left(5, \frac{2}{5}\right) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad