Pregunta
upstudy study bank question image url

Type or upload your work and solution. Your work should include right triangles in the appropriate quadrants with appropriate labels If \( \cos \alpha=-3 / 5 \) and \( \alpha \) is in Quad III and \( \tan \beta=-5 / 12 \) and \( \beta \) is in Quad II. Find the following: a) \( \cos (\alpha+\beta) \) b) \( \sin (\alpha+\beta) \) c) \( (\alpha+\beta) \) is in Quadrant

Ask by Bernard Nunez. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \cos (\alpha + \beta) = \frac{56}{65} \), \( \sin (\alpha + \beta) = \frac{33}{65} \), and \( (\alpha + \beta) \) is in Quadrant I.

Solución

Sure! Let's work through each part of the problem step by step. We'll use right triangles in the appropriate quadrants and apply trigonometric identities to find the solutions. --- ## Given: 1. \( \cos \alpha = -\frac{3}{5} \) and \( \alpha \) is in **Quadrant III**. 2. \( \tan \beta = -\frac{5}{12} \) and \( \beta \) is in **Quadrant II**. ## Objectives: a) Find \( \cos (\alpha + \beta) \) b) Find \( \sin (\alpha + \beta) \) c) Determine the quadrant in which \( (\alpha + \beta) \) lies. --- ## Part a) \( \cos (\alpha + \beta) \) ### Step 1: Recall the Cosine Addition Formula \[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] ### Step 2: Find \( \sin \alpha \) and \( \cos \beta \), \( \sin \beta \) #### For \( \alpha \) in Quadrant III: - \( \cos \alpha = -\frac{3}{5} \) - In Quadrant III, both sine and cosine are negative. **Constructing the Right Triangle for \( \alpha \):** - Adjacent side: 3 (negative) - Hypotenuse: 5 - Opposite side: \( y \) (to be found) Using Pythagoras: \[ y = -\sqrt{5^2 - 3^2} = -\sqrt{25 - 9} = -\sqrt{16} = -4 \] \[ \sin \alpha = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{-4}{5} \] #### For \( \beta \) in Quadrant II: - \( \tan \beta = -\frac{5}{12} \) - In Quadrant II, sine is positive and cosine is negative. **Constructing the Right Triangle for \( \beta \):** - Opposite side: 5 (since tangent is opposite/adjacent, and tangent is negative in Quadrant II, adjacent side is negative) - Adjacent side: -12 - Hypotenuse: \( r \) (to be found) Using Pythagoras: \[ r = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] \[ \cos \beta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{-12}{13} \] \[ \sin \beta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{5}{13} \] ### Step 3: Apply the Cosine Addition Formula \[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(-\frac{3}{5}\right) \left(-\frac{12}{13}\right) - \left(\frac{-4}{5}\right) \left(\frac{5}{13}\right) \] \[ = \frac{36}{65} - \left(-\frac{20}{65}\right) \] \[ = \frac{36}{65} + \frac{20}{65} = \frac{56}{65} \] **Answer for Part a):** \[ \cos (\alpha + \beta) = \frac{56}{65} \] --- ## Part b) \( \sin (\alpha + \beta) \) ### Step 1: Recall the Sine Addition Formula \[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] ### Step 2: Use the Previously Found Values \[ \sin (\alpha + \beta) = \left(\frac{-4}{5}\right) \left(-\frac{12}{13}\right) + \left(-\frac{3}{5}\right) \left(\frac{5}{13}\right) \] \[ = \frac{48}{65} + \left(-\frac{15}{65}\right) \] \[ = \frac{48}{65} - \frac{15}{65} = \frac{33}{65} \] **Answer for Part b):** \[ \sin (\alpha + \beta) = \frac{33}{65} \] --- ## Part c) Determine the Quadrant of \( (\alpha + \beta) \) To determine the quadrant where \( (\alpha + \beta) \) lies, we consider the signs of \( \cos (\alpha + \beta) \) and \( \sin (\alpha + \beta) \). From Parts a) and b): \[ \cos (\alpha + \beta) = \frac{56}{65} > 0 \] \[ \sin (\alpha + \beta) = \frac{33}{65} > 0 \] ### Step 1: Analyze the Signs - Both sine and cosine of \( (\alpha + \beta) \) are positive. ### Step 2: Recall Quadrant Sign Rules - **Quadrant I:** Both sine and cosine are positive. - **Quadrant II:** Sine is positive, cosine is negative. - **Quadrant III:** Both sine and cosine are negative. - **Quadrant IV:** Sine is negative, cosine is positive. ### Conclusion: Since both \( \sin (\alpha + \beta) \) and \( \cos (\alpha + \beta) \) are positive, \( (\alpha + \beta) \) lies in **Quadrant I**. **Answer for Part c):** \[ (\alpha + \beta) \text{ is in Quadrant I.} \] --- ## Summary of Answers: a) \( \cos (\alpha + \beta) = \frac{56}{65} \) b) \( \sin (\alpha + \beta) = \frac{33}{65} \) c) \( (\alpha + \beta) \) is in **Quadrant I** --- ### Visual Representation (Right Triangles) While I can't provide actual drawings here, I'll describe the right triangles for both angles in their respective quadrants. #### Triangle for \( \alpha \) in Quadrant III: - **Adjacent side (x):** -3 - **Opposite side (y):** -4 - **Hypotenuse (r):** 5 #### Triangle for \( \beta \) in Quadrant II: - **Adjacent side (x):** -12 - **Opposite side (y):** 5 - **Hypotenuse (r):** 13 These triangles help in determining the sine and cosine values based on the given trigonometric ratios and their signs in the respective quadrants. --- I hope this clarifies the problem and its solution! Let me know if you have any further questions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem given that \( \cos \alpha = -\frac{3}{5} \) in Quadrant III, and \( \tan \beta = -\frac{5}{12} \) in Quadrant II, we can find the appropriate sine and cosine values for both angles. First, let's find \( \sin \alpha \) and \( \sin \beta \): For angle \( \alpha \): Since \( \cos \alpha = -\frac{3}{5} \), we use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos^2 \alpha \): \[ \sin^2 \alpha + \left(-\frac{3}{5}\right)^2 = 1 \implies \sin^2 \alpha + \frac{9}{25} = 1 \implies \sin^2 \alpha = \frac{16}{25} \implies \sin \alpha = -\frac{4}{5} \quad (\text{in Quad III}) \] For angle \( \beta \): Since \( \tan \beta = -\frac{5}{12} \), this means \( \sin \beta = -5k \) and \( \cos \beta = 12k \) for some positive \( k \). Using: \[ \sin^2 \beta + \cos^2 \beta = 1 \] We have: \[ (-5k)^2 + (12k)^2 = 1 \implies 25k^2 + 144k^2 = 1 \implies 169k^2 = 1 \implies k = \frac{1}{13} \] Thus, we find: \[ \sin \beta = -\frac{5}{13}, \quad \cos \beta = \frac{12}{13} \quad (\text{in Quad II}) \] Now, using the angle addition formulas: a) For \( \cos(\alpha + \beta) \): \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \left(-\frac{3}{5}\right)\left(\frac{12}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) \] Calculating: \[ \cos(\alpha + \beta) = -\frac{36}{65} - \frac{20}{65} = -\frac{56}{65} \] b) For \( \sin(\alpha + \beta) \): \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \left(-\frac{4}{5}\right)\left(\frac{12}{13}\right) + \left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right) \] Calculating: \[ \sin(\alpha + \beta) = -\frac{48}{65} + \frac{15}{65} = -\frac{33}{65} \] c) To determine the quadrant of \( \alpha + \beta \): In Quadrant III, sine is negative, and in Quadrant II, cosine is positive. The sine of \( \alpha + \beta \) is negative while cosine is also negative, indicating that \( \alpha + \beta \) is in Quadrant IV. Thus, the answers are: a) \( \cos(\alpha + \beta) = -\frac{56}{65} \) b) \( \sin(\alpha + \beta) = -\frac{33}{65} \) c) \( \alpha + \beta \) is in Quadrant IV.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad