Type or upload your work and solution. Your work should include right triangles in the appropriate quadrants with appropriate labels If \( \cos \alpha=-3 / 5 \) and \( \alpha \) is in Quad III and \( \tan \beta=-5 / 12 \) and \( \beta \) is in Quad II. Find the following: a) \( \cos (\alpha+\beta) \) b) \( \sin (\alpha+\beta) \) c) \( (\alpha+\beta) \) is in Quadrant
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the problem given that \( \cos \alpha = -\frac{3}{5} \) in Quadrant III, and \( \tan \beta = -\frac{5}{12} \) in Quadrant II, we can find the appropriate sine and cosine values for both angles. First, let's find \( \sin \alpha \) and \( \sin \beta \): For angle \( \alpha \): Since \( \cos \alpha = -\frac{3}{5} \), we use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos^2 \alpha \): \[ \sin^2 \alpha + \left(-\frac{3}{5}\right)^2 = 1 \implies \sin^2 \alpha + \frac{9}{25} = 1 \implies \sin^2 \alpha = \frac{16}{25} \implies \sin \alpha = -\frac{4}{5} \quad (\text{in Quad III}) \] For angle \( \beta \): Since \( \tan \beta = -\frac{5}{12} \), this means \( \sin \beta = -5k \) and \( \cos \beta = 12k \) for some positive \( k \). Using: \[ \sin^2 \beta + \cos^2 \beta = 1 \] We have: \[ (-5k)^2 + (12k)^2 = 1 \implies 25k^2 + 144k^2 = 1 \implies 169k^2 = 1 \implies k = \frac{1}{13} \] Thus, we find: \[ \sin \beta = -\frac{5}{13}, \quad \cos \beta = \frac{12}{13} \quad (\text{in Quad II}) \] Now, using the angle addition formulas: a) For \( \cos(\alpha + \beta) \): \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \left(-\frac{3}{5}\right)\left(\frac{12}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) \] Calculating: \[ \cos(\alpha + \beta) = -\frac{36}{65} - \frac{20}{65} = -\frac{56}{65} \] b) For \( \sin(\alpha + \beta) \): \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \left(-\frac{4}{5}\right)\left(\frac{12}{13}\right) + \left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right) \] Calculating: \[ \sin(\alpha + \beta) = -\frac{48}{65} + \frac{15}{65} = -\frac{33}{65} \] c) To determine the quadrant of \( \alpha + \beta \): In Quadrant III, sine is negative, and in Quadrant II, cosine is positive. The sine of \( \alpha + \beta \) is negative while cosine is also negative, indicating that \( \alpha + \beta \) is in Quadrant IV. Thus, the answers are: a) \( \cos(\alpha + \beta) = -\frac{56}{65} \) b) \( \sin(\alpha + \beta) = -\frac{33}{65} \) c) \( \alpha + \beta \) is in Quadrant IV.