Pregunta
upstudy study bank question image url

Triangles \( \triangle D E F \) and \( \triangle H J K \) are similar. \( \triangle D E F \) has side lengths \( D E=10, E F= \) 15, and \( F D=20 \). Which of the following could be the side lengths of \( \triangle H J K \) ? A. \( 5,7,9 \) B. \( 2,6,7 \) C. \( 2,3,4 \) b. \( 8,10,12 \) D. 8

Ask by Li Mann. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct side lengths for \( \triangle H J K \) are \( 2, 3, 4 \).

Solución

To determine which set of side lengths could belong to triangle \( \triangle H J K \) similar to \( \triangle D E F \) with side lengths \( D E = 10 \), \( E F = 15 \), and \( F D = 20 \), we need to analyze the ratios of the corresponding sides. ### Step 1: Establish the Ratio The side lengths of \( \triangle D E F \) are: - \( D E = 10 \) - \( E F = 15 \) - \( F D = 20 \) Simplify these ratios by dividing each by 5: - \( 10 ÷ 5 = 2 \) - \( 15 ÷ 5 = 3 \) - \( 20 ÷ 5 = 4 \) So, the simplified ratio of the sides is **2:3:4**. ### Step 2: Check Each Option Let's check each option to see if they maintain this ratio: **A. \( 5, 7, 9 \)** - Ratios: \( 5/2 = 2.5 \), \( 7/3 ≈ 2.333 \), \( 9/4 = 2.25 \) - The ratios are not equal. **Not similar.** **B. \( 2, 6, 7 \)** - Ratios: \( 2/2 = 1 \), \( 6/3 = 2 \), \( 7/4 = 1.75 \) - The ratios are not equal. **Not similar.** **C. \( 2, 3, 4 \)** - Ratios: \( 2/2 = 1 \), \( 3/3 = 1 \), \( 4/4 = 1 \) - **All ratios are equal. **This set maintains the 2:3:4 ratio. Thus, **similar.** **D. \( 8, 10, 12 \)** - Ratios: \( 8/2 = 4 \), \( 10/3 ≈ 3.333 \), \( 12/4 = 3 \) - The ratios are not equal. **Not similar.** ### Conclusion Only **Option C: \( 2, 3, 4 \)** maintains the necessary ratio of **2:3:4**, making it the correct choice for the side lengths of \( \triangle H J K \). **Answer:** C. \( 2,3,4 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Triangles are similar when their corresponding angles are equal and their side lengths are proportional. For triangles \( \triangle D E F \) with sides 10, 15, and 20, the ratios of the sides can be simplified as follows: The side lengths are in the ratio \( \frac{10}{10} : \frac{15}{10} : \frac{20}{10} \) or \( 1 : 1.5 : 2 \). Now, let’s evaluate the given options to see if any of these maintain a similar ratio: A set of side lengths that keeps the same proportional relationship as \( \triangle D E F \) would need one side to satisfy being half, one to be 1.5 times, and one to be double, but none of the options provided match this. Thus, you would need to check which sets of side lengths can be scaled from the \( 1 : 1.5 : 2 \). The only option that comes close to respecting the ratio while being whole numbers would need to be higher than any of the given sets. Hence none of the options conform to the required similarity based on the proportion derived from the original triangle.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad