Pregunta
upstudy study bank question image url

What is the effect on the graph of \( f(x)=\sqrt[3]{x} \) when \( f(x) \) is replaced by \( -2 f(x) \) ? (1 point) The graph is reflected across the \( x \)-axis and has been stretched horizontally. The graph is reflected across the \( x \)-axis and has been stretched vertically. The graph is reflected across the \( y \)-axis and has been compressed vertically. The graph is reflected across the \( y \)-axis and has been compressed horizontally.

Ask by Reed Cook. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph is reflected across the \( x \)-axis and stretched vertically.

Solución

When you replace \( f(x) = \sqrt[3]{x} \) with \( -2f(x) \), the transformation involves two main changes: 1. **Reflection across the \( x \)-axis:** The negative sign (\(-\)) flips the graph vertically. 2. **Vertical Stretch:** The factor of 2 (\( \times 2 \)) stretches the graph away from the \( x \)-axis by a factor of 2. Thus, the graph of \( f(x) = \sqrt[3]{x} \) is both reflected across the \( x \)-axis and stretched vertically when replaced by \( -2f(x) \). **Answer:** The graph is reflected across the \( x \)-axis and has been stretched vertically.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When the function \( f(x) = \sqrt[3]{x} \) is replaced by \( -2 f(x) \), you are effectively reflecting the graph across the \( x \)-axis due to the negative sign and stretching it vertically by a factor of 2 because of the multiplication by 2. This means all the \( y \)-coordinates of the points on the original graph are flipped over the \( x \)-axis and then stretched away from the \( x \)-axis. So, the correct answer is: The graph is reflected across the \( x \)-axis and has been stretched vertically.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad