Pregunta
Given the following velocity function of an object moving along a line, find the position function with the given initial position. \( v(t)=e^{-2 t}+5 ; s(0)=1 \) The position function is \( s(t)=\square \).
Ask by Hammond Reed. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The position function is \( s(t) = 5t + \frac{3}{2} - \frac{1}{2}e^{-2t} \).
Solución
To find the position function \( s(t) \) given the velocity function \( v(t) = e^{-2t} + 5 \) and the initial condition \( s(0) = 1 \), follow these steps:
1. **Integrate the Velocity Function:**
The position function is the integral of the velocity function with respect to time:
\[
s(t) = \int v(t) \, dt = \int (e^{-2t} + 5) \, dt
\]
\[
s(t) = \int e^{-2t} \, dt + \int 5 \, dt
\]
\[
s(t) = -\frac{1}{2} e^{-2t} + 5t + C
\]
2. **Apply the Initial Condition:**
Use \( s(0) = 1 \) to find the constant \( C \):
\[
s(0) = -\frac{1}{2} e^{0} + 5(0) + C = -\frac{1}{2} + C = 1
\]
\[
C = 1 + \frac{1}{2} = \frac{3}{2}
\]
3. **Write the Final Position Function:**
Substitute \( C \) back into the equation:
\[
s(t) = -\frac{1}{2} e^{-2t} + 5t + \frac{3}{2}
\]
Rearranging the terms for clarity:
\[
s(t) = 5t + \frac{3}{2} - \frac{1}{2} e^{-2t}
\]
**Final Answer:**
\[
s(t) = 5\, t + \tfrac{3}{2} - \tfrac{1}{2}\, e^{-2 t}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the position function \( s(t) \), you first need to integrate the velocity function \( v(t) = e^{-2t} + 5 \). The integral of \( v(t) \) will yield the position function \( s(t) \). \[ s(t) = \int (e^{-2t} + 5) dt = -\frac{1}{2} e^{-2t} + 5t + C \] To determine the constant \( C \), use the initial condition \( s(0) = 1 \): \[ s(0) = -\frac{1}{2} e^{0} + 5(0) + C = 1 \implies -\frac{1}{2} + C = 1 \implies C = \frac{3}{2} \] Therefore, your position function is: \[ s(t) = -\frac{1}{2} e^{-2t} + 5t + \frac{3}{2} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium