Pregunta
upstudy study bank question image url

If the demand for a product is given by \( D(p)=\frac{1000}{\sqrt{p}}-1 \) what is the average rate of change of demand when \( p \) increases within the following values? (Give exact answers. Do not round.) \( \begin{array}{l}\text { (a) } 4 \text { to } 16 \\ -200 / 9 \\ \text { (b) } 16 . . .16 . t o .100 \\ \text { Your answer cannot be understood or graded. More Information } \\ \text { Entaction, integer, or exact decimal. Do not approximate. }\end{array} \).

Ask by Lang Bird. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average rate of change of demand is: - (a) From 4 to 16: \( -\frac{125}{6} \) - (b) From 16 to 100: \( -\frac{25}{14} \)

Solución

Let's compute the **average rate of change** of the demand function \( D(p) = \frac{1000}{\sqrt{p}} - 1 \) over the specified intervals. The **average rate of change** of a function \( D(p) \) from \( p = a \) to \( p = b \) is given by: \[ \text{Average Rate of Change} = \frac{D(b) - D(a)}{b - a} \] ### Part (a): From \( p = 4 \) to \( p = 16 \) 1. **Compute \( D(4) \):** \[ D(4) = \frac{1000}{\sqrt{4}} - 1 = \frac{1000}{2} - 1 = 500 - 1 = 499 \] 2. **Compute \( D(16) \):** \[ D(16) = \frac{1000}{\sqrt{16}} - 1 = \frac{1000}{4} - 1 = 250 - 1 = 249 \] 3. **Calculate the Average Rate of Change:** \[ \text{Average Rate of Change} = \frac{249 - 499}{16 - 4} = \frac{-250}{12} = -\frac{125}{6} \] **Exact Answer:** \( -\frac{125}{6} \) ### Part (b): From \( p = 16 \) to \( p = 100 \) 1. **Compute \( D(16) \):** *(Already computed above)* \[ D(16) = 249 \] 2. **Compute \( D(100) \):** \[ D(100) = \frac{1000}{\sqrt{100}} - 1 = \frac{1000}{10} - 1 = 100 - 1 = 99 \] 3. **Calculate the Average Rate of Change:** \[ \text{Average Rate of Change} = \frac{99 - 249}{100 - 16} = \frac{-150}{84} = -\frac{25}{14} \] **Exact Answer:** \( -\frac{25}{14} \) ### Summary of Answers: - **(a)** From \( p = 4 \) to \( p = 16 \): \( -\frac{125}{6} \) - **(b)** From \( p = 16 \) to \( p = 100 \): \( -\frac{25}{14} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the average rate of change of demand between the defined price intervals, we need to calculate \( D(p) \) at both ends of each interval and then use the formula for the average rate of change: \[ \text{Average Rate of Change} = \frac{D(b) - D(a)}{b - a} \] For part (a), let's compute \( D(4) \) and \( D(16) \): 1. **Calculate \( D(4) \)**: \[ D(4) = \frac{1000}{\sqrt{4}} - 1 = \frac{1000}{2} - 1 = 500 - 1 = 499 \] 2. **Calculate \( D(16) \)**: \[ D(16) = \frac{1000}{\sqrt{16}} - 1 = \frac{1000}{4} - 1 = 250 - 1 = 249 \] Now, using these values in the formula for average rate of change: \[ \text{Average Rate of Change} = \frac{D(16) - D(4)}{16 - 4} = \frac{249 - 499}{12} = \frac{-250}{12} = \frac{-125}{6} \] For part (b), let's compute \( D(16) \) (calculated earlier) and \( D(100) \): 1. **Calculate \( D(100) \)**: \[ D(100) = \frac{1000}{\sqrt{100}} - 1 = \frac{1000}{10} - 1 = 100 - 1 = 99 \] Now, using these values in the formula for average rate of change: \[ \text{Average Rate of Change} = \frac{D(100) - D(16)}{100 - 16} = \frac{99 - 249}{84} = \frac{-150}{84} = \frac{-25}{14} \] Final Answers: (a) \(\frac{-125}{6}\), (b) \(\frac{-25}{14}\).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad