Pregunta
upstudy study bank question image url

Solving a decimal word problem using a linear inequality with the variabl... Chris is choosing between two exercise routines. In Routine \#1, he burns 24 calories walking. He then runs at a rate that burns 12.5 calories per minute. In Routine \#2, he burns 42 calories walking. He then runs at a rate that burns 8.9 calories per minute. For what amounts of time spent running will Routine \#1 burn at most as many calories as Routine \#2? Use \( t \) for the number of minutes spent running, and solve your inequality for \( t \). In Un

Ask by Pope Hart. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Chris should run for **5 minutes or less** in Routine \#1 to burn at most as many calories as Routine \#2.

Solución

To determine for how many minutes \( t \) Chris should spend running in Routine \#1 such that it burns **at most** as many calories as Routine \#2, we'll set up and solve a linear inequality. ### Step 1: Define the Calorie Equations 1. **Routine \#1:** - **Walking:** Burns 24 calories. - **Running:** Burns 12.5 calories per minute. **Total Calories for Routine \#1:** \[ 24 + 12.5t \] 2. **Routine \#2:** - **Walking:** Burns 42 calories. - **Running:** Burns 8.9 calories per minute. **Total Calories for Routine \#2:** \[ 42 + 8.9t \] ### Step 2: Set Up the Inequality We want Routine \#1 to burn **at most** as many calories as Routine \#2: \[ 24 + 12.5t \leq 42 + 8.9t \] ### Step 3: Solve the Inequality for \( t \) 1. **Subtract \( 8.9t \) from both sides** to get all \( t \)-terms on one side: \[ 24 + 12.5t - 8.9t \leq 42 \] \[ 24 + 3.6t \leq 42 \] 2. **Subtract 24 from both sides** to isolate the term with \( t \): \[ 3.6t \leq 42 - 24 \] \[ 3.6t \leq 18 \] 3. **Divide both sides by 3.6** to solve for \( t \): \[ t \leq \frac{18}{3.6} \] \[ t \leq 5 \] ### Conclusion Chris should spend **at most 5 minutes** running in Routine \#1 for it to burn **no more calories** than Routine \#2. \[ \boxed{t \leq 5} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the time spent running where Routine #1 burns at most as many calories as Routine #2, we can set up the inequality: 24 + 12.5t ≤ 42 + 8.9t. Now, simplify this: 12.5t - 8.9t ≤ 42 - 24 3.6t ≤ 18 t ≤ 5. So, Chris can run for up to 5 minutes in Routine #1 while still burning at most the same calories as Routine #2. Let's break it down step by step. Start by isolating \( t \) on one side. You might spot a mistake by skipping combining like terms; always double-check that each term is accurately moved to the other side of the inequality. In this case, ensure you’re accounting for both the walking and running calories correctly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad