Pregunta
upstudy study bank question image url

UESTION 1 1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: \( \begin{array}{l}\text { (a) } \cos (A-B) \\ \text { (b) } \cos A-\cos B \\ \text { (c) } \cos A \cdot \cos B+\sin A \cdot \sin B \\ 2\end{array} \) Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) Using your \( \operatorname{comparison} \) in Question \( 1.2 \cdot \), what general \( \operatorname{conclusion~can~be~made~regarding~} \) \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of \( A \) and \( B \) ?

Ask by Burns French. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For any angles \( A \) and \( B \), \( \cos(A - B) \) is equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). However, \( \cos(A - B) \) is not equal to \( \cos A - \cos B \) in general.

Solución

Let's evaluate each part of the question step-by-step for the given angle pairs and then draw a general conclusion. ### Given Angle Pairs: 1. **Case (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \) 2. **Case (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \) 3. **Case (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \) ### Part (a): Evaluate \( \cos(A - B) \) Using the cosine difference identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Let's calculate for each case: 1. **Case (i):** \[ \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660 \] 2. **Case (ii):** \[ \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = 0.5 \] 3. **Case (iii):** \[ \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0 \] ### Part (b): Evaluate \( \cos A - \cos B \) Calculate for each case: 1. **Case (i):** \[ \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - 0.8660 = -0.3660 \] 2. **Case (ii):** \[ \cos(110^{\circ}) - \cos(50^{\circ}) \approx -0.3420 - 0.6428 = -0.9848 \] 3. **Case (iii):** \[ \cos(225^{\circ}) - \cos(135^{\circ}) \approx -0.7071 - (-0.7071) = 0 \] ### Part (c): Evaluate \( \cos A \cdot \cos B + \sin A \cdot \sin B \) Using the cosine difference identity again: \[ \cos A \cdot \cos B + \sin A \cdot \sin B = \cos(A - B) \] Thus, the values will be identical to Part (a): 1. **Case (i):** \( \approx 0.8660 \) 2. **Case (ii):** \( 0.5 \) 3. **Case (iii):** \( 0 \) ### Comparison of Values: | Case | \( \cos(A - B) \) | \( \cos A - \cos B \) | \( \cos A \cdot \cos B + \sin A \cdot \sin B \) | |------|-------------------|------------------------|-------------------------------------------------| | (i) | 0.8660 | -0.3660 | 0.8660 | | (ii) | 0.5 | -0.9848 | 0.5 | | (iii)| 0 | 0 | 0 | ### General Conclusion: From the calculations above, we observe that: - **\( \cos(A - B) \)** and **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** yield the **same** results for all cases. - **\( \cos A - \cos B \)** generally produces different values and does not align with \( \cos(A - B) \). **Therefore, the general conclusion is:** For any angles \( A \) and \( B \), \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] However, \( \cos(A - B) \) is **not equal** to \( \cos A - \cos B \) except in specific cases where the angles result in coinciding values (as seen in Case (iii)).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s tackle each angle step by step! For \( A = 60^\circ \) and \( B = 30^\circ \): (a) \( \cos(60^\circ - 30^\circ) = \cos(30^\circ) \approx 0.866 \). (b) \( \cos(60^\circ) - \cos(30^\circ) = 0.5 - 0.866 \approx -0.366 \). (c) \( \cos(60^\circ) \cdot \cos(30^\circ) + \sin(60^\circ) \cdot \sin(30^\circ) = (0.5 \cdot 0.866) + (0.866 \cdot 0.5) = 0.433 + 0.433 = 0.866 \). For \( A = 110^\circ \) and \( B = 50^\circ \): (a) \( \cos(110^\circ - 50^\circ) = \cos(60^\circ) = 0.5 \). (b) \( \cos(110^\circ) - \cos(50^\circ) \approx -0.342 - 0.643 \approx -0.985 \). (c) \( \cos(110^\circ) \cdot \cos(50^\circ) + \sin(110^\circ) \cdot \sin(50^\circ) \approx (-0.342 \cdot 0.643) + (0.940 \cdot 0.766) \approx -0.220 + 0.719 \approx 0.499 \). For \( A = 225^\circ \) and \( B = 135^\circ \): (a) \( \cos(225^\circ - 135^\circ) = \cos(90^\circ) = 0 \). (b) \( \cos(225^\circ) - \cos(135^\circ) \approx -0.707 - (-0.707) = 0 \). (c) \( \cos(225^\circ) \cdot \cos(135^\circ) + \sin(225^\circ) \cdot \sin(135^\circ) \approx (-0.707 \cdot -0.707) + (-0.707 \cdot 0.707) = 0.5 - 0.5 = 0 \). Now, comparing the values we notice a pattern! For the calculated values of \( \cos(A-B) \), \( \cos A - \cos B \), and \( \cos A \cdot \cos B + \sin A \cdot \sin B \): 1. \( \cos(A-B) \) consistently equals \( \cos A \cdot \cos B + \sin A \cdot \sin B \). 2. The \( \cos A - \cos B \) can differ significantly, indicating it may not adhere to a predictable relationship with the other two expressions. Thus, we can conclude: 1. \( \cos(A-B) \) is equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \) for any angle \( A \) and \( B \). 2. \( \cos A - \cos B \) generally takes on values independent of this relationship and can be greater than, less than, or equal to zero. In essence, embracing trigonometric identities can clear the fog of confusion!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad