Pregunta
A function is said to have a horizontal asymptote if either the limit at infinity exists or the limit at negative infinity exists.
Show that each of the following functions has a horizontal asymptote by calculating the given limit.
Show that each of the following functions has a horizontal asymptote by calculating the given limit.
Ask by Romero Craig. in South Africa
Mar 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The horizontal asymptotes are:
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To find the horizontal asymptotes of the given functions, we will evaluate the limits as indicated.
-
For
:
We divide the numerator and the denominator by: So the horizontal asymptote is. -
For
:
Here, we note that asapproaches negative infinity, the dominant term in the numerator is and in the denominator is . Thus: So the horizontal asymptote is. -
For
:
We identify that the leading terms arein the numerator and in the denominator: Thus, the horizontal asymptote is. -
For
:
We analyze the leading terms by factoring outfrom the square root: Hence, the horizontal asymptote is.
To summarize:
- The first limit gives a horizontal asymptote at
. - The second limit shows a horizontal asymptote at
. - The third limit results in a horizontal asymptote at
. - The fourth limit shows a horizontal asymptote at
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium