Pregunta
upstudy study bank question image url

PART I. This will be considered as your P1 Quiz No. 1: 1. \( \int 12 t^{7}-t^{2}-t+2 d t \) 2. \( \int 10 w^{4}+9 w^{3}+7 w d w \) 3. \( \int_{0}^{2}\left(3 x^{3}-7 x\right) d x \) 4. \( \int_{2}^{4} \frac{x+1}{x^{2}+2 x+1} d x \) 5. \( \int \frac{x^{4}+3 x^{3}+2 x+6}{x+3} d x \) 6. Determine \( f(x) \), given that \( f^{\prime}(x)=6 x^{8}-20 x^{4}+x^{2}+9 \). PART II. This will be considered as your P1 Quiz No. 2: 1. \( \int \frac{e^{x}}{e^{x}+1} d x \) 2. \( \int b x e^{a x^{2}+1} d x \), wherein \( \mathrm{a} \& \mathrm{~b} \) are constants. 3. \( \int \frac{e^{\ln (1-t)}}{1-t} d t \) 4. \( \int_{2}^{4} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} d x \) 5. \( \int \frac{d x}{x(\ln x)^{2}} \) 6. \( \int \tan x d x \)

Ask by Gordon Moran. in the Philippines
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

### PART I: P1 Quiz No. 1 Solutions 1. **Integral**: \[ \int (12 t^{7}-t^{2}-t+2) \, dt = \frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C \] 2. **Integral**: \[ \int (10 w^{4}+9 w^{3}+7 w) \, dw = 2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C \] 3. **Definite Integral**: \[ \int_{0}^{2} (3 x^{3}-7 x) \, dx = -2 \] 4. **Definite Integral**: \[ \int_{2}^{4} \frac{x+1}{x^{2}+2 x+1} \, dx = \ln{\left(\frac{5}{3}\right)} \] 5. **Integral**: \[ \int \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \, dx = \frac{x^{4}}{4}+2x + C \] 6. **Finding \( f(x) \)**: \[ f(x) = \frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C \] --- ### PART II: P1 Quiz No. 2 Solutions 1. **Integral**: \[ \int \frac{e^{x}}{e^{x}+1} \, dx = \ln{(e^{x}+1)} + C \] 2. **Integral**: The expression is invalid. Please check the constants \( a \) and \( b \). 3. **Integral**: \[ \int \frac{e^{\ln (1-t)}}{1-t} \, dt = t + C \] 4. **Definite Integral**: \[ \int_{2}^{4} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \, dx = \frac{1}{3}\ln{\left(\frac{5}{2}\right)} \] 5. **Integral**: \[ \int \frac{1}{x(\ln x)^{2}} \, dx = -\frac{1}{\ln{(x)}} + C \] 6. **Integral**: \[ \int \tan x \, dx = \ln{(|\sec(x)|)} + C \] If you have any questions or need further assistance, feel free to ask!

Solución

Evaluate the integral by following steps: - step0: Solution: \(\int \frac{e^{\ln{\left(1-t\right)}}}{1-t} dt\) - step1: Transform the expression: \(\int \frac{1-t}{1-t} dt\) - step2: Divide the terms: \(\int 1 dt\) - step3: Evaluate the integral: \(t\) - step4: Add the constant of integral C: \(t + C, C \in \mathbb{R}\) Calculate the integral \( \frac{x+1}{x^{2}+2 x+1} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{x+1}{x^{2}+2x+1} dx\) - step1: Simplify the expression: \(\int \frac{1}{x+1} dx\) - step2: Evaluate the integral: \(\ln{\left(\left|x+1\right|\right)}\) - step3: Add the constant of integral C: \(\ln{\left(\left|x+1\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \tan x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \tan\left(x\right) dx\) - step1: Evaluate the integral: \(\ln{\left(\left|\sec\left(x\right)\right|\right)}\) - step2: Add the constant of integral C: \(\ln{\left(\left|\sec\left(x\right)\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{x^{4}+3x^{3}+2x+6}{x+3} dx\) - step1: Simplify the expression: \(\int \left(x^{3}+2\right) dx\) - step2: Use properties of integrals: \(\int x^{3} dx+\int 2 dx\) - step3: Evaluate the integral: \(\frac{x^{4}}{4}+\int 2 dx\) - step4: Evaluate the integral: \(\frac{x^{4}}{4}+2x\) - step5: Add the constant of integral C: \(\frac{x^{4}}{4}+2x + C, C \in \mathbb{R}\) Calculate the integral \( \frac{e^{x}}{e^{x}+1} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{e^{x}}{e^{x}+1} dx\) - step1: Use the substitution \(dx=e^{-x} dt\) to transform the integral\(:\) \(\int \frac{e^{x}}{e^{x}+1}\times e^{-x} dt\) - step2: Simplify: \(\int \frac{1}{e^{x}+1} dt\) - step3: Use the substitution \(t=e^{x}\) to transform the integral\(:\) \(\int \frac{1}{t+1} dt\) - step4: Evaluate the integral: \(\ln{\left(\left|t+1\right|\right)}\) - step5: Substitute back: \(\ln{\left(\left|e^{x}+1\right|\right)}\) - step6: Calculate the absolute value: \(\ln{\left(e^{x}+1\right)}\) - step7: Add the constant of integral C: \(\ln{\left(e^{x}+1\right)} + C, C \in \mathbb{R}\) Calculate the integral \( 3 x^{3}-7 x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(3x^{3}-7x\right) dx\) - step1: Use properties of integrals: \(\int 3x^{3} dx+\int -7x dx\) - step2: Evaluate the integral: \(\frac{3x^{4}}{4}+\int -7x dx\) - step3: Evaluate the integral: \(\frac{3x^{4}}{4}-\frac{7x^{2}}{2}\) - step4: Add the constant of integral C: \(\frac{3x^{4}}{4}-\frac{7x^{2}}{2} + C, C \in \mathbb{R}\) Calculate the integral \( 10 w^{4}+9 w^{3}+7 w \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(10w^{4}+9w^{3}+7w\right) dw\) - step1: Use properties of integrals: \(\int 10w^{4} dw+\int 9w^{3} dw+\int 7w dw\) - step2: Evaluate the integral: \(2w^{5}+\int 9w^{3} dw+\int 7w dw\) - step3: Evaluate the integral: \(2w^{5}+\frac{9w^{4}}{4}+\int 7w dw\) - step4: Evaluate the integral: \(2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2}\) - step5: Add the constant of integral C: \(2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1}{x(\ln x)^{2}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1}{x\left(\ln{\left(x\right)}\right)^{2}} dx\) - step1: Simplify the expression: \(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}x} dx\) - step2: Use the substitution \(dx=x dt\) to transform the integral\(:\) \(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}x}\times x dt\) - step3: Simplify: \(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}} dt\) - step4: Use the substitution \(t=\ln{\left(x\right)}\) to transform the integral\(:\) \(\int \frac{1}{t^{2}} dt\) - step5: Evaluate the integral: \(\frac{t^{-2+1}}{-2+1}\) - step6: Add the numbers: \(\frac{t^{-1}}{-2+1}\) - step7: Add the numbers: \(\frac{t^{-1}}{-1}\) - step8: Divide the terms: \(-t^{-1}\) - step9: Express with a positive exponent: \(-\frac{1}{t}\) - step10: Substitute back: \(-\frac{1}{\ln{\left(x\right)}}\) - step11: Add the constant of integral C: \(-\frac{1}{\ln{\left(x\right)}} + C, C \in \mathbb{R}\) Calculate the integral \( 6 x^{8}-20 x^{4}+x^{2}+9 \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(6x^{8}-20x^{4}+x^{2}+9\right) dx\) - step1: Use properties of integrals: \(\int 6x^{8} dx+\int -20x^{4} dx+\int x^{2} dx+\int 9 dx\) - step2: Evaluate the integral: \(\frac{2x^{9}}{3}+\int -20x^{4} dx+\int x^{2} dx+\int 9 dx\) - step3: Evaluate the integral: \(\frac{2x^{9}}{3}-4x^{5}+\int x^{2} dx+\int 9 dx\) - step4: Evaluate the integral: \(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+\int 9 dx\) - step5: Evaluate the integral: \(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x\) - step6: Add the constant of integral C: \(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C, C \in \mathbb{R}\) Calculate the integral \( 12 t^{7}-t^{2}-t+2 \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(12t^{7}-t^{2}-t+2\right) dt\) - step1: Use properties of integrals: \(\int 12t^{7} dt+\int -t^{2} dt+\int -t dt+\int 2 dt\) - step2: Evaluate the integral: \(\frac{3t^{8}}{2}+\int -t^{2} dt+\int -t dt+\int 2 dt\) - step3: Evaluate the integral: \(\frac{3t^{8}}{2}-\frac{t^{3}}{3}+\int -t dt+\int 2 dt\) - step4: Evaluate the integral: \(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+\int 2 dt\) - step5: Evaluate the integral: \(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t\) - step6: Add the constant of integral C: \(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1+2x+x^{2}}{3x+3x^{2}+x^{3}} dx\) - step1: Use the substitution \(dx=\frac{1}{3+6x+3x^{2}} dt\) to transform the integral\(:\) \(\int \frac{1+2x+x^{2}}{3x+3x^{2}+x^{3}}\times \frac{1}{3+6x+3x^{2}} dt\) - step2: Simplify: \(\int \frac{1}{3\left(3x+3x^{2}+x^{3}\right)} dt\) - step3: Use the substitution \(t=3x+3x^{2}+x^{3}\) to transform the integral\(:\) \(\int \frac{1}{3t} dt\) - step4: Rewrite the expression: \(\int \frac{1}{3}\times \frac{1}{t} dt\) - step5: Use properties of integrals: \(\frac{1}{3}\times \int \frac{1}{t} dt\) - step6: Evaluate the integral: \(\frac{1}{3}\ln{\left(\left|t\right|\right)}\) - step7: Substitute back: \(\frac{1}{3}\ln{\left(\left|3x+3x^{2}+x^{3}\right|\right)}\) - step8: Add the constant of integral C: \(\frac{1}{3}\ln{\left(\left|3x+3x^{2}+x^{3}\right|\right)} + C, C \in \mathbb{R}\) ### PART I: P1 Quiz No. 1 Solutions 1. **Integral**: \[ \int (12 t^{7}-t^{2}-t+2) \, dt = \frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C, \quad C \in \mathbb{R} \] 2. **Integral**: \[ \int (10 w^{4}+9 w^{3}+7 w) \, dw = 2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C, \quad C \in \mathbb{R} \] 3. **Definite Integral**: \[ \int_{0}^{2} (3 x^{3}-7 x) \, dx = \frac{3x^{4}}{4}-\frac{7x^{2}}{2} \bigg|_{0}^{2} = \left(\frac{3(2)^{4}}{4}-\frac{7(2)^{2}}{2}\right) - \left(0\right) = 12 - 14 = -2 \] 4. **Definite Integral**: \[ \int_{2}^{4} \frac{x+1}{x^{2}+2 x+1} \, dx = \ln{(|x+1|)} \bigg|_{2}^{4} = \ln{(5)} - \ln{(3)} = \ln{\left(\frac{5}{3}\right)} \] 5. **Integral**: \[ \int \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \, dx = \frac{x^{4}}{4}+2x + C, \quad C \in \mathbb{R} \] 6. **Finding \( f(x) \)**: \[ f(x) = \int (6 x^{8}-20 x^{4}+x^{2}+9) \, dx = \frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C, \quad C \in \mathbb{R} \] --- ### PART II: P1 Quiz No. 2 Solutions 1. **Integral**: \[ \int \frac{e^{x}}{e^{x}+1} \, dx = \ln{(e^{x}+1)} + C, \quad C \in \mathbb{R} \] 2. **Integral**: The expression \( \int b x e^{a x^{2}+1} \, dx \) has a syntax error. Please provide a valid expression. 3. **Integral**: \[ \int \frac{e^{\ln (1-t)}}{1-t} \, dt = t + C, \quad C \in \mathbb{R} \] 4. **Definite Integral**: \[ \int_{2}^{4} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \, dx = \frac{1}{3}\ln{(|3x+3x^{2}+x^{3}|)} \bigg|_{2}^{4} = \frac{1}{3}(\ln{(75)} - \ln{(30)}) = \frac{1}{3}\ln{\left(\frac{75}{30}\right)} = \frac{1}{3}\ln{\left(\frac{5}{2}\right)} \] 5. **Integral**: \[ \int \frac{1}{x(\ln x)^{2}} \, dx = -\frac{1}{\ln{(x)}} + C, \quad C \in \mathbb{R} \] 6. **Integral**: \[ \int \tan x \, dx = \ln{(|\sec(x)|)} + C, \quad C \in \mathbb{R} \] If you have any further questions or need additional assistance, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Ready to dive into the world of integrals? In history, calculus, the backbone of integration, was revolutionized by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century. They independently developed the concept of the integral as a way to calculate areas under curves, lending a mathematical framework to natural phenomena. Approximately 300 years later, their work still paves the way for contemporary advancements in engineering, physics, and economics! Now, let’s make those integrals work for you! When tackling integrals, a common pitfall is neglecting the importance of substitution or integration by parts. Always assess your integral methodically—sometimes a clever u-substitution or recognizing a pattern can save you a lot of time! Don’t forget to check your bounds and constants; they can make all the difference in your final answer. Happy integrating!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad