Responder
### PART I: P1 Quiz No. 1 Solutions
1. **Integral**:
\[
\int (12 t^{7}-t^{2}-t+2) \, dt = \frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C
\]
2. **Integral**:
\[
\int (10 w^{4}+9 w^{3}+7 w) \, dw = 2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C
\]
3. **Definite Integral**:
\[
\int_{0}^{2} (3 x^{3}-7 x) \, dx = -2
\]
4. **Definite Integral**:
\[
\int_{2}^{4} \frac{x+1}{x^{2}+2 x+1} \, dx = \ln{\left(\frac{5}{3}\right)}
\]
5. **Integral**:
\[
\int \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \, dx = \frac{x^{4}}{4}+2x + C
\]
6. **Finding \( f(x) \)**:
\[
f(x) = \frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C
\]
---
### PART II: P1 Quiz No. 2 Solutions
1. **Integral**:
\[
\int \frac{e^{x}}{e^{x}+1} \, dx = \ln{(e^{x}+1)} + C
\]
2. **Integral**:
The expression is invalid. Please check the constants \( a \) and \( b \).
3. **Integral**:
\[
\int \frac{e^{\ln (1-t)}}{1-t} \, dt = t + C
\]
4. **Definite Integral**:
\[
\int_{2}^{4} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \, dx = \frac{1}{3}\ln{\left(\frac{5}{2}\right)}
\]
5. **Integral**:
\[
\int \frac{1}{x(\ln x)^{2}} \, dx = -\frac{1}{\ln{(x)}} + C
\]
6. **Integral**:
\[
\int \tan x \, dx = \ln{(|\sec(x)|)} + C
\]
If you have any questions or need further assistance, feel free to ask!
Solución
Evaluate the integral by following steps:
- step0: Solution:
\(\int \frac{e^{\ln{\left(1-t\right)}}}{1-t} dt\)
- step1: Transform the expression:
\(\int \frac{1-t}{1-t} dt\)
- step2: Divide the terms:
\(\int 1 dt\)
- step3: Evaluate the integral:
\(t\)
- step4: Add the constant of integral C:
\(t + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{x+1}{x^{2}+2 x+1} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{x+1}{x^{2}+2x+1} dx\)
- step1: Simplify the expression:
\(\int \frac{1}{x+1} dx\)
- step2: Evaluate the integral:
\(\ln{\left(\left|x+1\right|\right)}\)
- step3: Add the constant of integral C:
\(\ln{\left(\left|x+1\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \tan x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \tan\left(x\right) dx\)
- step1: Evaluate the integral:
\(\ln{\left(\left|\sec\left(x\right)\right|\right)}\)
- step2: Add the constant of integral C:
\(\ln{\left(\left|\sec\left(x\right)\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{x^{4}+3x^{3}+2x+6}{x+3} dx\)
- step1: Simplify the expression:
\(\int \left(x^{3}+2\right) dx\)
- step2: Use properties of integrals:
\(\int x^{3} dx+\int 2 dx\)
- step3: Evaluate the integral:
\(\frac{x^{4}}{4}+\int 2 dx\)
- step4: Evaluate the integral:
\(\frac{x^{4}}{4}+2x\)
- step5: Add the constant of integral C:
\(\frac{x^{4}}{4}+2x + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{e^{x}}{e^{x}+1} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{e^{x}}{e^{x}+1} dx\)
- step1: Use the substitution \(dx=e^{-x} dt\) to transform the integral\(:\)
\(\int \frac{e^{x}}{e^{x}+1}\times e^{-x} dt\)
- step2: Simplify:
\(\int \frac{1}{e^{x}+1} dt\)
- step3: Use the substitution \(t=e^{x}\) to transform the integral\(:\)
\(\int \frac{1}{t+1} dt\)
- step4: Evaluate the integral:
\(\ln{\left(\left|t+1\right|\right)}\)
- step5: Substitute back:
\(\ln{\left(\left|e^{x}+1\right|\right)}\)
- step6: Calculate the absolute value:
\(\ln{\left(e^{x}+1\right)}\)
- step7: Add the constant of integral C:
\(\ln{\left(e^{x}+1\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( 3 x^{3}-7 x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(3x^{3}-7x\right) dx\)
- step1: Use properties of integrals:
\(\int 3x^{3} dx+\int -7x dx\)
- step2: Evaluate the integral:
\(\frac{3x^{4}}{4}+\int -7x dx\)
- step3: Evaluate the integral:
\(\frac{3x^{4}}{4}-\frac{7x^{2}}{2}\)
- step4: Add the constant of integral C:
\(\frac{3x^{4}}{4}-\frac{7x^{2}}{2} + C, C \in \mathbb{R}\)
Calculate the integral \( 10 w^{4}+9 w^{3}+7 w \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(10w^{4}+9w^{3}+7w\right) dw\)
- step1: Use properties of integrals:
\(\int 10w^{4} dw+\int 9w^{3} dw+\int 7w dw\)
- step2: Evaluate the integral:
\(2w^{5}+\int 9w^{3} dw+\int 7w dw\)
- step3: Evaluate the integral:
\(2w^{5}+\frac{9w^{4}}{4}+\int 7w dw\)
- step4: Evaluate the integral:
\(2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2}\)
- step5: Add the constant of integral C:
\(2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{1}{x(\ln x)^{2}} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{1}{x\left(\ln{\left(x\right)}\right)^{2}} dx\)
- step1: Simplify the expression:
\(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}x} dx\)
- step2: Use the substitution \(dx=x dt\) to transform the integral\(:\)
\(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}x}\times x dt\)
- step3: Simplify:
\(\int \frac{1}{\left(\ln{\left(x\right)}\right)^{2}} dt\)
- step4: Use the substitution \(t=\ln{\left(x\right)}\) to transform the integral\(:\)
\(\int \frac{1}{t^{2}} dt\)
- step5: Evaluate the integral:
\(\frac{t^{-2+1}}{-2+1}\)
- step6: Add the numbers:
\(\frac{t^{-1}}{-2+1}\)
- step7: Add the numbers:
\(\frac{t^{-1}}{-1}\)
- step8: Divide the terms:
\(-t^{-1}\)
- step9: Express with a positive exponent:
\(-\frac{1}{t}\)
- step10: Substitute back:
\(-\frac{1}{\ln{\left(x\right)}}\)
- step11: Add the constant of integral C:
\(-\frac{1}{\ln{\left(x\right)}} + C, C \in \mathbb{R}\)
Calculate the integral \( 6 x^{8}-20 x^{4}+x^{2}+9 \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(6x^{8}-20x^{4}+x^{2}+9\right) dx\)
- step1: Use properties of integrals:
\(\int 6x^{8} dx+\int -20x^{4} dx+\int x^{2} dx+\int 9 dx\)
- step2: Evaluate the integral:
\(\frac{2x^{9}}{3}+\int -20x^{4} dx+\int x^{2} dx+\int 9 dx\)
- step3: Evaluate the integral:
\(\frac{2x^{9}}{3}-4x^{5}+\int x^{2} dx+\int 9 dx\)
- step4: Evaluate the integral:
\(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+\int 9 dx\)
- step5: Evaluate the integral:
\(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x\)
- step6: Add the constant of integral C:
\(\frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C, C \in \mathbb{R}\)
Calculate the integral \( 12 t^{7}-t^{2}-t+2 \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(12t^{7}-t^{2}-t+2\right) dt\)
- step1: Use properties of integrals:
\(\int 12t^{7} dt+\int -t^{2} dt+\int -t dt+\int 2 dt\)
- step2: Evaluate the integral:
\(\frac{3t^{8}}{2}+\int -t^{2} dt+\int -t dt+\int 2 dt\)
- step3: Evaluate the integral:
\(\frac{3t^{8}}{2}-\frac{t^{3}}{3}+\int -t dt+\int 2 dt\)
- step4: Evaluate the integral:
\(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+\int 2 dt\)
- step5: Evaluate the integral:
\(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t\)
- step6: Add the constant of integral C:
\(\frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{1+2x+x^{2}}{3x+3x^{2}+x^{3}} dx\)
- step1: Use the substitution \(dx=\frac{1}{3+6x+3x^{2}} dt\) to transform the integral\(:\)
\(\int \frac{1+2x+x^{2}}{3x+3x^{2}+x^{3}}\times \frac{1}{3+6x+3x^{2}} dt\)
- step2: Simplify:
\(\int \frac{1}{3\left(3x+3x^{2}+x^{3}\right)} dt\)
- step3: Use the substitution \(t=3x+3x^{2}+x^{3}\) to transform the integral\(:\)
\(\int \frac{1}{3t} dt\)
- step4: Rewrite the expression:
\(\int \frac{1}{3}\times \frac{1}{t} dt\)
- step5: Use properties of integrals:
\(\frac{1}{3}\times \int \frac{1}{t} dt\)
- step6: Evaluate the integral:
\(\frac{1}{3}\ln{\left(\left|t\right|\right)}\)
- step7: Substitute back:
\(\frac{1}{3}\ln{\left(\left|3x+3x^{2}+x^{3}\right|\right)}\)
- step8: Add the constant of integral C:
\(\frac{1}{3}\ln{\left(\left|3x+3x^{2}+x^{3}\right|\right)} + C, C \in \mathbb{R}\)
### PART I: P1 Quiz No. 1 Solutions
1. **Integral**:
\[
\int (12 t^{7}-t^{2}-t+2) \, dt = \frac{3t^{8}}{2}-\frac{t^{3}}{3}-\frac{t^{2}}{2}+2t + C, \quad C \in \mathbb{R}
\]
2. **Integral**:
\[
\int (10 w^{4}+9 w^{3}+7 w) \, dw = 2w^{5}+\frac{9w^{4}}{4}+\frac{7w^{2}}{2} + C, \quad C \in \mathbb{R}
\]
3. **Definite Integral**:
\[
\int_{0}^{2} (3 x^{3}-7 x) \, dx = \frac{3x^{4}}{4}-\frac{7x^{2}}{2} \bigg|_{0}^{2} = \left(\frac{3(2)^{4}}{4}-\frac{7(2)^{2}}{2}\right) - \left(0\right) = 12 - 14 = -2
\]
4. **Definite Integral**:
\[
\int_{2}^{4} \frac{x+1}{x^{2}+2 x+1} \, dx = \ln{(|x+1|)} \bigg|_{2}^{4} = \ln{(5)} - \ln{(3)} = \ln{\left(\frac{5}{3}\right)}
\]
5. **Integral**:
\[
\int \frac{x^{4}+3 x^{3}+2 x+6}{x+3} \, dx = \frac{x^{4}}{4}+2x + C, \quad C \in \mathbb{R}
\]
6. **Finding \( f(x) \)**:
\[
f(x) = \int (6 x^{8}-20 x^{4}+x^{2}+9) \, dx = \frac{2x^{9}}{3}-4x^{5}+\frac{x^{3}}{3}+9x + C, \quad C \in \mathbb{R}
\]
---
### PART II: P1 Quiz No. 2 Solutions
1. **Integral**:
\[
\int \frac{e^{x}}{e^{x}+1} \, dx = \ln{(e^{x}+1)} + C, \quad C \in \mathbb{R}
\]
2. **Integral**:
The expression \( \int b x e^{a x^{2}+1} \, dx \) has a syntax error. Please provide a valid expression.
3. **Integral**:
\[
\int \frac{e^{\ln (1-t)}}{1-t} \, dt = t + C, \quad C \in \mathbb{R}
\]
4. **Definite Integral**:
\[
\int_{2}^{4} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} \, dx = \frac{1}{3}\ln{(|3x+3x^{2}+x^{3}|)} \bigg|_{2}^{4} = \frac{1}{3}(\ln{(75)} - \ln{(30)}) = \frac{1}{3}\ln{\left(\frac{75}{30}\right)} = \frac{1}{3}\ln{\left(\frac{5}{2}\right)}
\]
5. **Integral**:
\[
\int \frac{1}{x(\ln x)^{2}} \, dx = -\frac{1}{\ln{(x)}} + C, \quad C \in \mathbb{R}
\]
6. **Integral**:
\[
\int \tan x \, dx = \ln{(|\sec(x)|)} + C, \quad C \in \mathbb{R}
\]
If you have any further questions or need additional assistance, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución