Pregunta
10) \( \begin{aligned}-5 x+y & =-3 \\ 3 x-8 y & =24\end{aligned} \)
Ask by Rowe Sandoval. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solution is \( x=0 \) and \( y=-3 \).
Solución
Solve the system of equations \( -5x+y=-3;3x-8y=24 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}-5x+y=-3\\3x-8y=24\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-3+5x\\3x-8y=24\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(3x-8\left(-3+5x\right)=24\)
- step3: Simplify:
\(-37x+24=24\)
- step4: Move the constant to the right side:
\(-37x=24-24\)
- step5: Subtract the terms:
\(-37x=0\)
- step6: Change the signs:
\(37x=0\)
- step7: Rewrite the expression:
\(x=0\)
- step8: Substitute the value of \(x:\)
\(y=-3+5\times 0\)
- step9: Simplify:
\(y=-3\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=0\\y=-3\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=0\\y=-3\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(0,-3\right)\)
The solution to the system of equations is \( (x,y) = (0,-3) \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve the system of equations \(-5x + y = -3\) and \(3x - 8y = 24\), we can start by expressing \(y\) from the first equation. From \(-5x + y = -3\), we get \(y = 5x - 3\). Now, substitute \(y\) into the second equation: \[ 3x - 8(5x - 3) = 24 \] This simplifies to: \[ 3x - 40x + 24 = 24 \implies -37x + 24 = 24 \implies -37x = 0 \implies x = 0. \] Now, substitute \(x = 0\) back into the expression for \(y\): \[ y = 5(0) - 3 = -3. \] Thus, the solution to the system of equations is \(x = 0\) and \(y = -3\), or as an ordered pair, \((0, -3)\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium