Pregunta
upstudy study bank question image url

Describe how to derive the quadratic formula from a quadratic equation in standard form.

Ask by Ortiz Little. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic formula is: \[ x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{ 2a } \] This formula gives the solutions for \( x \) in any quadratic equation of the form \( ax^2 + bx + c = 0 \).

Solución

Deriving the quadratic formula involves manipulating the standard form of a quadratic equation to solve for the variable \( x \). Here's a step-by-step guide to deriving the quadratic formula from the standard quadratic equation: ### **Standard Form of a Quadratic Equation** A quadratic equation in standard form is: \[ ax^2 + bx + c = 0 \] where: - \( a \), \( b \), and \( c \) are coefficients with \( a \neq 0 \) - \( x \) represents the variable ### **Goal** Solve for \( x \) in terms of \( a \), \( b \), and \( c \). ### **Step 1: Divide All Terms by \( a \)** To simplify, divide every term in the equation by \( a \) (since \( a \neq 0 \)): \[ x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \] This simplifies the equation to: \[ x^2 + \frac{b}{a}x = -\frac{c}{a} \] ### **Step 2: Complete the Square** The idea is to convert the left side of the equation into a perfect square trinomial. 1. **Identify the Coefficient of \( x \):** The coefficient of \( x \) is \( \frac{b}{a} \). 2. **Find Half of This Coefficient:** \[ \frac{1}{2} \cdot \frac{b}{a} = \frac{b}{2a} \] 3. **Square This Half-Coefficient:** \[ \left( \frac{b}{2a} \right)^2 = \frac{b^2}{4a^2} \] 4. **Add and Subtract This Square Inside the Equation:** \[ x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a} \] This step ensures that the equation remains balanced. ### **Step 3: Rewrite the Left Side as a Perfect Square** The left side of the equation now forms a perfect square trinomial: \[ \left( x + \frac{b}{2a} \right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \] ### **Step 4: Simplify the Right Side** Combine the terms on the right side by finding a common denominator: \[ \frac{b^2}{4a^2} - \frac{4ac}{4a^2} = \frac{b^2 - 4ac}{4a^2} \] So the equation becomes: \[ \left( x + \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \] ### **Step 5: Take the Square Root of Both Sides** Apply the square root to both sides, remembering to consider both the positive and negative roots: \[ x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \] ### **Step 6: Solve for \( x \)** Isolate \( x \) by subtracting \( \frac{b}{2a} \) from both sides: \[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \] ### **Step 7: Combine the Terms Over a Common Denominator** Since both terms have the same denominator, they can be combined: \[ x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{ 2a } \] ### **Final Quadratic Formula** \[ x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{ 2a } \] ### **Summary** By completing the square on the standard form of the quadratic equation \( ax^2 + bx + c = 0 \), we've derived the quadratic formula, which provides the solutions for \( x \) in terms of the coefficients \( a \), \( b \), and \( c \). This formula is invaluable for solving any quadratic equation, especially when factoring is difficult or impossible.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To derive the quadratic formula, start with the standard form of a quadratic equation: \( ax^2 + bx + c = 0 \). First, divide the entire equation by \( a \) (assuming \( a \neq 0 \)) to simplify it to \( x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \). Next, rearrange this to \( x^2 + \frac{b}{a}x = -\frac{c}{a} \) and then complete the square by adding \(\left(\frac{b}{2a}\right)^2\) to both sides. This results in \( \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \). Finally, take the square root of both sides and solve for \( x \) to find \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Real-world applications of the quadratic formula can be seen in fields like physics and engineering. For instance, when calculating projectile motion, the formula can determine the time of flight or maximum height of an object thrown into the air. Similarly, it is essential in optimizing profits in business where revenue and cost can be modeled as quadratic equations. Whether you’re launching a rocket or planning your next sales strategy, the quadratic formula is your trusty guide!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad