Pregunta
upstudy study bank question image url

2. Solve for \( x \) : \( \begin{array}{ll}\text { a) } 2^{2 x-1}=8 & \text { b) } 3^{\frac{3 x-1}{2}}=\frac{1}{27} \\ \text { c) } 4^{x-1}=32 & \text { d) } 9^{2 x+1}=\frac{1}{27} \\ \text { e) } 5^{-2}=\frac{1}{25^{x}} & \text { (f) } 3^{x-2}=\frac{1}{3^{x}} \\ \text { g) } 4.16^{x}=8 & \text { h) } 2.5^{x}=50 \\ \text { i) } 1-6^{x}=0 & \text { j) } 10^{x}=1 \\ \text { k) } 3^{x-1}=1 & \text { (l) } 4^{-x}-16=0 \\ \text { m) } 4.5^{2 x}=4 & \text { b) } 8^{x+2}=16^{2 x-3} \\ \text { 3. Solve for } x: & \text { d) } 5^{2 x+3}=0,008 \\ \text { a) } 9^{2 x+3}=27^{x+5} & \text { f) } 5^{x(x+1)}=25 \\ \text { c) } 27^{x-2}=81^{2 x+1} & \\ \text { e) } 2^{x+1}=(0,5)^{x-2} & \\ \text { g) } 5^{2 x(x-3)}=0,20 & \end{array} \)

Ask by Romero Lyons. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the solutions for each equation: 1. **a)** \( x = 2 \) **b)** \( x = -\frac{5}{3} \) or approximately \( x \approx -1.67 \) **c)** \( x = \frac{7}{2} \) or \( x = 3.5 \) **d)** \( x = -\frac{5}{4} \) or \( x = -1.25 \) **e)** \( x = 1 \) **f)** \( x = 1 \) **g)** \( x = 3 \log_{\frac{104}{25}}{(2)} \) **h)** \( x = \log_{\frac{5}{2}}{(50)} \) **i)** \( x = 0 \) **j)** \( x = 0 \) **k)** \( x = 1 \) **l)** \( x = -2 \) **m)** \( x = \log_{\frac{9}{2}}{(2)} \) **n)** \( x = \frac{18}{5} \) or \( x = 3.6 \) 2. **a)** \( x = -3 \) **b)** \( x_{1} = -2, x_{2} = 1 \) **c)** \( x = -2 \) **d)** \( x = \frac{1}{2} \) or \( x = 0.5 \) **e)** \( x_{1} = \frac{3 - \sqrt{7}}{2}, x_{2} = \frac{3 + \sqrt{7}}{2} \) **f)** \( x = -2 \) These are the solutions for all the given equations.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(10^{x}=1\) - step1: Rewrite in exponential form: \(10^{x}=10^{0}\) - step2: Set the exponents equal: \(x=0\) Solve the equation \( 1-6^{x}=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(1-6^{x}=0\) - step1: Move the constant to the right side: \(-6^{x}=0-1\) - step2: Remove 0: \(-6^{x}=-1\) - step3: Change the signs: \(6^{x}=1\) - step4: Rewrite in exponential form: \(6^{x}=6^{0}\) - step5: Set the exponents equal: \(x=0\) Solve the equation \( 2^{2 x-1}=8 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{2x-1}=8\) - step1: Rewrite in exponential form: \(2^{2x-1}=2^{3}\) - step2: Set the exponents equal: \(2x-1=3\) - step3: Move the constant to the right side: \(2x=3+1\) - step4: Add the numbers: \(2x=4\) - step5: Divide both sides: \(\frac{2x}{2}=\frac{4}{2}\) - step6: Divide the numbers: \(x=2\) Solve the equation \( 9^{2 x+3}=27^{x+5} \). Solve the equation by following steps: - step0: Solve for \(x\): \(9^{2x+3}=27^{x+5}\) - step1: Rewrite the expression: \(3^{4x+6}=3^{3x+15}\) - step2: Set the exponents equal: \(4x+6=3x+15\) - step3: Move the expression to the left side: \(4x-3x=15-6\) - step4: Add and subtract: \(x=15-6\) - step5: Add and subtract: \(x=9\) Solve the equation \( 4^{x-1}=32 \). Solve the equation by following steps: - step0: Solve for \(x\): \(4^{x-1}=32\) - step1: Rewrite in exponential form: \(2^{2\left(x-1\right)}=2^{5}\) - step2: Set the exponents equal: \(2\left(x-1\right)=5\) - step3: Divide both sides: \(\frac{2\left(x-1\right)}{2}=\frac{5}{2}\) - step4: Divide the numbers: \(x-1=\frac{5}{2}\) - step5: Move the constant to the right side: \(x=\frac{5}{2}+1\) - step6: Add the numbers: \(x=\frac{7}{2}\) Solve the equation \( 27^{x-2}=81^{2 x+1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(27^{x-2}=81^{2x+1}\) - step1: Rewrite the expression: \(3^{3x-6}=3^{8x+4}\) - step2: Set the exponents equal: \(3x-6=8x+4\) - step3: Move the expression to the left side: \(3x-8x=4+6\) - step4: Add and subtract: \(-5x=4+6\) - step5: Add and subtract: \(-5x=10\) - step6: Change the signs: \(5x=-10\) - step7: Divide both sides: \(\frac{5x}{5}=\frac{-10}{5}\) - step8: Divide the numbers: \(x=-2\) Solve the equation \( 4.16^{x}=8 \). Solve the equation by following steps: - step0: Solve for \(x\): \(4.16^{x}=8\) - step1: Convert the expressions: \(\left(\frac{104}{25}\right)^{x}=8\) - step2: Take the logarithm of both sides: \(\log_{\frac{104}{25}}{\left(\left(\frac{104}{25}\right)^{x}\right)}=\log_{\frac{104}{25}}{\left(8\right)}\) - step3: Evaluate the logarithm: \(x=\log_{\frac{104}{25}}{\left(8\right)}\) - step4: Simplify: \(x=3\log_{\frac{104}{25}}{\left(2\right)}\) Solve the equation \( 3^{x-2}=1/(3^{x}) \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{x-2}=\frac{1}{3^{x}}\) - step1: Rewrite the expression: \(3^{x-2}=3^{-x}\) - step2: Set the exponents equal: \(x-2=-x\) - step3: Move the variable to the left side: \(x-2+x=0\) - step4: Add the terms: \(2x-2=0\) - step5: Move the constant to the right side: \(2x=0+2\) - step6: Remove 0: \(2x=2\) - step7: Divide both sides: \(\frac{2x}{2}=\frac{2}{2}\) - step8: Divide the numbers: \(x=1\) Solve the equation \( 4^{-x}-16=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(4^{-x}-16=0\) - step1: Move the constant to the right side: \(4^{-x}=0+16\) - step2: Remove 0: \(4^{-x}=16\) - step3: Rewrite in exponential form: \(4^{-x}=4^{2}\) - step4: Set the exponents equal: \(-x=2\) - step5: Change the signs: \(x=-2\) Solve the equation \( 2^{x+1}=(0.5)^{x-2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{x+1}=0.5^{x-2}\) - step1: Convert the expressions: \(2^{x+1}=\left(\frac{1}{2}\right)^{x-2}\) - step2: Rewrite the expression: \(2^{x+1}=2^{-x+2}\) - step3: Set the exponents equal: \(x+1=-x+2\) - step4: Move the expression to the left side: \(x+x=2-1\) - step5: Add and subtract: \(2x=2-1\) - step6: Add and subtract: \(2x=1\) - step7: Divide both sides: \(\frac{2x}{2}=\frac{1}{2}\) - step8: Divide the numbers: \(x=\frac{1}{2}\) Solve the equation \( 9^{2 x+1}=1/27 \). Solve the equation by following steps: - step0: Solve for \(x\): \(9^{2x+1}=\frac{1}{27}\) - step1: Rewrite in exponential form: \(3^{2\left(2x+1\right)}=3^{-3}\) - step2: Set the exponents equal: \(2\left(2x+1\right)=-3\) - step3: Divide both sides: \(\frac{2\left(2x+1\right)}{2}=\frac{-3}{2}\) - step4: Divide the numbers: \(2x+1=-\frac{3}{2}\) - step5: Move the constant to the right side: \(2x=-\frac{3}{2}-1\) - step6: Subtract the numbers: \(2x=-\frac{5}{2}\) - step7: Multiply by the reciprocal: \(2x\times \frac{1}{2}=-\frac{5}{2}\times \frac{1}{2}\) - step8: Multiply: \(x=-\frac{5}{4}\) Solve the equation \( 5^{2 x+3}=0.008 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{2x+3}=0.008\) - step1: Rewrite the expression: \(5^{2x+3}=\frac{1}{125}\) - step2: Rewrite the expression: \(5^{2x+3}=5^{-3}\) - step3: Set the exponents equal: \(2x+3=-3\) - step4: Move the constant to the right side: \(2x=-3-3\) - step5: Subtract the numbers: \(2x=-6\) - step6: Divide both sides: \(\frac{2x}{2}=\frac{-6}{2}\) - step7: Divide the numbers: \(x=-3\) Solve the equation \( 8^{x+2}=16^{2 x-3} \). Solve the equation by following steps: - step0: Solve for \(x\): \(8^{x+2}=16^{2x-3}\) - step1: Rewrite the expression: \(2^{3x+6}=2^{8x-12}\) - step2: Set the exponents equal: \(3x+6=8x-12\) - step3: Move the expression to the left side: \(3x-8x=-12-6\) - step4: Add and subtract: \(-5x=-12-6\) - step5: Add and subtract: \(-5x=-18\) - step6: Change the signs: \(5x=18\) - step7: Divide both sides: \(\frac{5x}{5}=\frac{18}{5}\) - step8: Divide the numbers: \(x=\frac{18}{5}\) Solve the equation \( 3^{x-1}=1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{x-1}=1\) - step1: Rewrite in exponential form: \(3^{x-1}=3^{0}\) - step2: Set the exponents equal: \(x-1=0\) - step3: Move the constant to the right side: \(x=0+1\) - step4: Remove 0: \(x=1\) Solve the equation \( 2.5^{x}=50 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2.5^{x}=50\) - step1: Convert the expressions: \(\left(\frac{5}{2}\right)^{x}=50\) - step2: Take the logarithm of both sides: \(\log_{\frac{5}{2}}{\left(\left(\frac{5}{2}\right)^{x}\right)}=\log_{\frac{5}{2}}{\left(50\right)}\) - step3: Evaluate the logarithm: \(x=\log_{\frac{5}{2}}{\left(50\right)}\) Solve the equation \( 5^{-2}=1/(25^{x}) \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{-2}=\frac{1}{\left(25^{x}\right)}\) - step1: Evaluate: \(5^{-2}=\frac{1}{25^{x}}\) - step2: Rearrange the terms: \(5^{-2}=25^{-x}\) - step3: Swap the sides: \(25^{-x}=5^{-2}\) - step4: Rewrite in exponential form: \(5^{-2x}=5^{-2}\) - step5: Set the exponents equal: \(-2x=-2\) - step6: Change the signs: \(2x=2\) - step7: Divide both sides: \(\frac{2x}{2}=\frac{2}{2}\) - step8: Divide the numbers: \(x=1\) Solve the equation \( 3^{(3 x-1)/2}=1/27 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{\frac{\left(3x-1\right)}{2}}=\frac{1}{27}\) - step1: Remove the parentheses: \(3^{\frac{3x-1}{2}}=\frac{1}{27}\) - step2: Rewrite in exponential form: \(3^{\frac{3x-1}{2}}=3^{-3}\) - step3: Set the exponents equal: \(\frac{3x-1}{2}=-3\) - step4: Cross multiply: \(3x-1=2\left(-3\right)\) - step5: Simplify the equation: \(3x-1=-6\) - step6: Move the constant to the right side: \(3x=-6+1\) - step7: Add the numbers: \(3x=-5\) - step8: Divide both sides: \(\frac{3x}{3}=\frac{-5}{3}\) - step9: Divide the numbers: \(x=-\frac{5}{3}\) Solve the equation \( 4.5^{2 x}=4 \). Solve the equation by following steps: - step0: Solve for \(x\): \(4.5^{2x}=4\) - step1: Convert the expressions: \(\left(\frac{9}{2}\right)^{2x}=4\) - step2: Take the logarithm of both sides: \(\log_{\frac{9}{2}}{\left(\left(\frac{9}{2}\right)^{2x}\right)}=\log_{\frac{9}{2}}{\left(4\right)}\) - step3: Evaluate the logarithm: \(2x=\log_{\frac{9}{2}}{\left(4\right)}\) - step4: Divide both sides: \(\frac{2x}{2}=\frac{\log_{\frac{9}{2}}{\left(4\right)}}{2}\) - step5: Divide the numbers: \(x=\frac{\log_{\frac{9}{2}}{\left(4\right)}}{2}\) - step6: Simplify: \(x=\log_{\frac{9}{2}}{\left(2\right)}\) Solve the equation \( 5^{x(x+1)}=25 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{x\left(x+1\right)}=25\) - step1: Rewrite in exponential form: \(5^{x\left(x+1\right)}=5^{2}\) - step2: Set the exponents equal: \(x\left(x+1\right)=2\) - step3: Expand the expression: \(x^{2}+x=2\) - step4: Move the expression to the left side: \(x^{2}+x-2=0\) - step5: Factor the expression: \(\left(x-1\right)\left(x+2\right)=0\) - step6: Separate into possible cases: \(\begin{align}&x-1=0\\&x+2=0\end{align}\) - step7: Solve the equation: \(\begin{align}&x=1\\&x=-2\end{align}\) - step8: Rewrite: \(x_{1}=-2,x_{2}=1\) Solve the equation \( 5^{2 x(x-3)}=0.20 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{2x\left(x-3\right)}=0.2\) - step1: Rewrite in exponential form: \(5^{2x\left(x-3\right)}=5^{-1}\) - step2: Set the exponents equal: \(2x\left(x-3\right)=-1\) - step3: Expand the expression: \(2x^{2}-6x=-1\) - step4: Move the expression to the left side: \(2x^{2}-6x-\left(-1\right)=0\) - step5: Remove the parentheses: \(2x^{2}-6x+1=0\) - step6: Solve using the quadratic formula: \(x=\frac{6\pm \sqrt{\left(-6\right)^{2}-4\times 2}}{2\times 2}\) - step7: Simplify the expression: \(x=\frac{6\pm \sqrt{\left(-6\right)^{2}-4\times 2}}{4}\) - step8: Simplify the expression: \(x=\frac{6\pm \sqrt{28}}{4}\) - step9: Simplify the expression: \(x=\frac{6\pm 2\sqrt{7}}{4}\) - step10: Separate into possible cases: \(\begin{align}&x=\frac{6+2\sqrt{7}}{4}\\&x=\frac{6-2\sqrt{7}}{4}\end{align}\) - step11: Simplify the expression: \(\begin{align}&x=\frac{3+\sqrt{7}}{2}\\&x=\frac{6-2\sqrt{7}}{4}\end{align}\) - step12: Simplify the expression: \(\begin{align}&x=\frac{3+\sqrt{7}}{2}\\&x=\frac{3-\sqrt{7}}{2}\end{align}\) - step13: Rewrite: \(x_{1}=\frac{3-\sqrt{7}}{2},x_{2}=\frac{3+\sqrt{7}}{2}\) Here are the solutions for each equation: ### 1. Solve for \( x \): **a)** \( 2^{2x-1} = 8 \) Solution: \( x = 2 \) **b)** \( 3^{\frac{3x-1}{2}} = \frac{1}{27} \) Solution: \( x = -\frac{5}{3} \) or approximately \( x \approx -1.67 \) **c)** \( 4^{x-1} = 32 \) Solution: \( x = \frac{7}{2} \) or \( x = 3.5 \) **d)** \( 9^{2x+1} = \frac{1}{27} \) Solution: \( x = -\frac{5}{4} \) or \( x = -1.25 \) **e)** \( 5^{-2} = \frac{1}{25^{x}} \) Solution: \( x = 1 \) **f)** \( 3^{x-2} = \frac{1}{3^{x}} \) Solution: \( x = 1 \) **g)** \( 4.16^{x} = 8 \) Solution: \( x = 3 \log_{\frac{104}{25}}{(2)} \) **h)** \( 2.5^{x} = 50 \) Solution: \( x = \log_{\frac{5}{2}}{(50)} \) **i)** \( 1 - 6^{x} = 0 \) Solution: \( x = 0 \) **j)** \( 10^{x} = 1 \) Solution: \( x = 0 \) **k)** \( 3^{x-1} = 1 \) Solution: \( x = 1 \) **l)** \( 4^{-x} - 16 = 0 \) Solution: \( x = -2 \) **m)** \( 4.5^{2x} = 4 \) Solution: \( x = \log_{\frac{9}{2}}{(2)} \) **n)** \( 8^{x+2} = 16^{2x-3} \) Solution: \( x = \frac{18}{5} \) or \( x = 3.6 \) ### 2. Solve for \( x \): **a)** \( 5^{2x+3} = 0.008 \) Solution: \( x = -3 \) **b)** \( 9^{2x+3} = 27^{x+5} \) Solution: \( x_{1} = -2, x_{2} = 1 \) **c)** \( 5^{x(x+1)} = 25 \) Solution: \( x = -2 \) **d)** \( 27^{x-2} = 81^{2x+1} \) Solution: \( x = \frac{1}{2} \) or \( x = 0.5 \) **e)** \( 2^{x+1} = (0.5)^{x-2} \) Solution: \( x_{1} = \frac{3 - \sqrt{7}}{2}, x_{2} = \frac{3 + \sqrt{7}}{2} \) **f)** \( 5^{2x(x-3)} = 0.20 \) Solution: \( x = -2 \) These solutions cover all the equations provided. If you need further clarification on any specific solution, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve these exponential equations, it's beneficial to express both sides of the equation with the same base when possible. For instance, in equation (a), notice that \( 8 \) can be rewritten as \( 2^3 \). Therefore, \( 2^{2x-1} = 2^3 \) leads to \( 2x - 1 = 3 \), making it easy to find \( x \). Similarly, in equation (b), rewrite \( \frac{1}{27} \) as \( 3^{-3} \) to get your equation to a manageable form. Expanding your toolkit with logarithms can also be a game changer! When you have equations that can't be simplified to the same base, take the logarithm of both sides. For example, in equation (f), applying logarithms allows you to manipulate the algebra: \( x - 2 = -x \) turns into a straightforward calculation. Just ensure you keep track of your transformations to avoid common pitfalls, like losing a negative sign!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad