Responder
Here are the solutions for each equation:
1. **a)** \( x = 2 \)
**b)** \( x = -\frac{5}{3} \) or approximately \( x \approx -1.67 \)
**c)** \( x = \frac{7}{2} \) or \( x = 3.5 \)
**d)** \( x = -\frac{5}{4} \) or \( x = -1.25 \)
**e)** \( x = 1 \)
**f)** \( x = 1 \)
**g)** \( x = 3 \log_{\frac{104}{25}}{(2)} \)
**h)** \( x = \log_{\frac{5}{2}}{(50)} \)
**i)** \( x = 0 \)
**j)** \( x = 0 \)
**k)** \( x = 1 \)
**l)** \( x = -2 \)
**m)** \( x = \log_{\frac{9}{2}}{(2)} \)
**n)** \( x = \frac{18}{5} \) or \( x = 3.6 \)
2. **a)** \( x = -3 \)
**b)** \( x_{1} = -2, x_{2} = 1 \)
**c)** \( x = -2 \)
**d)** \( x = \frac{1}{2} \) or \( x = 0.5 \)
**e)** \( x_{1} = \frac{3 - \sqrt{7}}{2}, x_{2} = \frac{3 + \sqrt{7}}{2} \)
**f)** \( x = -2 \)
These are the solutions for all the given equations.
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(10^{x}=1\)
- step1: Rewrite in exponential form:
\(10^{x}=10^{0}\)
- step2: Set the exponents equal:
\(x=0\)
Solve the equation \( 1-6^{x}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(1-6^{x}=0\)
- step1: Move the constant to the right side:
\(-6^{x}=0-1\)
- step2: Remove 0:
\(-6^{x}=-1\)
- step3: Change the signs:
\(6^{x}=1\)
- step4: Rewrite in exponential form:
\(6^{x}=6^{0}\)
- step5: Set the exponents equal:
\(x=0\)
Solve the equation \( 2^{2 x-1}=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{2x-1}=8\)
- step1: Rewrite in exponential form:
\(2^{2x-1}=2^{3}\)
- step2: Set the exponents equal:
\(2x-1=3\)
- step3: Move the constant to the right side:
\(2x=3+1\)
- step4: Add the numbers:
\(2x=4\)
- step5: Divide both sides:
\(\frac{2x}{2}=\frac{4}{2}\)
- step6: Divide the numbers:
\(x=2\)
Solve the equation \( 9^{2 x+3}=27^{x+5} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9^{2x+3}=27^{x+5}\)
- step1: Rewrite the expression:
\(3^{4x+6}=3^{3x+15}\)
- step2: Set the exponents equal:
\(4x+6=3x+15\)
- step3: Move the expression to the left side:
\(4x-3x=15-6\)
- step4: Add and subtract:
\(x=15-6\)
- step5: Add and subtract:
\(x=9\)
Solve the equation \( 4^{x-1}=32 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4^{x-1}=32\)
- step1: Rewrite in exponential form:
\(2^{2\left(x-1\right)}=2^{5}\)
- step2: Set the exponents equal:
\(2\left(x-1\right)=5\)
- step3: Divide both sides:
\(\frac{2\left(x-1\right)}{2}=\frac{5}{2}\)
- step4: Divide the numbers:
\(x-1=\frac{5}{2}\)
- step5: Move the constant to the right side:
\(x=\frac{5}{2}+1\)
- step6: Add the numbers:
\(x=\frac{7}{2}\)
Solve the equation \( 27^{x-2}=81^{2 x+1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(27^{x-2}=81^{2x+1}\)
- step1: Rewrite the expression:
\(3^{3x-6}=3^{8x+4}\)
- step2: Set the exponents equal:
\(3x-6=8x+4\)
- step3: Move the expression to the left side:
\(3x-8x=4+6\)
- step4: Add and subtract:
\(-5x=4+6\)
- step5: Add and subtract:
\(-5x=10\)
- step6: Change the signs:
\(5x=-10\)
- step7: Divide both sides:
\(\frac{5x}{5}=\frac{-10}{5}\)
- step8: Divide the numbers:
\(x=-2\)
Solve the equation \( 4.16^{x}=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4.16^{x}=8\)
- step1: Convert the expressions:
\(\left(\frac{104}{25}\right)^{x}=8\)
- step2: Take the logarithm of both sides:
\(\log_{\frac{104}{25}}{\left(\left(\frac{104}{25}\right)^{x}\right)}=\log_{\frac{104}{25}}{\left(8\right)}\)
- step3: Evaluate the logarithm:
\(x=\log_{\frac{104}{25}}{\left(8\right)}\)
- step4: Simplify:
\(x=3\log_{\frac{104}{25}}{\left(2\right)}\)
Solve the equation \( 3^{x-2}=1/(3^{x}) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x-2}=\frac{1}{3^{x}}\)
- step1: Rewrite the expression:
\(3^{x-2}=3^{-x}\)
- step2: Set the exponents equal:
\(x-2=-x\)
- step3: Move the variable to the left side:
\(x-2+x=0\)
- step4: Add the terms:
\(2x-2=0\)
- step5: Move the constant to the right side:
\(2x=0+2\)
- step6: Remove 0:
\(2x=2\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{2}{2}\)
- step8: Divide the numbers:
\(x=1\)
Solve the equation \( 4^{-x}-16=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4^{-x}-16=0\)
- step1: Move the constant to the right side:
\(4^{-x}=0+16\)
- step2: Remove 0:
\(4^{-x}=16\)
- step3: Rewrite in exponential form:
\(4^{-x}=4^{2}\)
- step4: Set the exponents equal:
\(-x=2\)
- step5: Change the signs:
\(x=-2\)
Solve the equation \( 2^{x+1}=(0.5)^{x-2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x+1}=0.5^{x-2}\)
- step1: Convert the expressions:
\(2^{x+1}=\left(\frac{1}{2}\right)^{x-2}\)
- step2: Rewrite the expression:
\(2^{x+1}=2^{-x+2}\)
- step3: Set the exponents equal:
\(x+1=-x+2\)
- step4: Move the expression to the left side:
\(x+x=2-1\)
- step5: Add and subtract:
\(2x=2-1\)
- step6: Add and subtract:
\(2x=1\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{1}{2}\)
- step8: Divide the numbers:
\(x=\frac{1}{2}\)
Solve the equation \( 9^{2 x+1}=1/27 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9^{2x+1}=\frac{1}{27}\)
- step1: Rewrite in exponential form:
\(3^{2\left(2x+1\right)}=3^{-3}\)
- step2: Set the exponents equal:
\(2\left(2x+1\right)=-3\)
- step3: Divide both sides:
\(\frac{2\left(2x+1\right)}{2}=\frac{-3}{2}\)
- step4: Divide the numbers:
\(2x+1=-\frac{3}{2}\)
- step5: Move the constant to the right side:
\(2x=-\frac{3}{2}-1\)
- step6: Subtract the numbers:
\(2x=-\frac{5}{2}\)
- step7: Multiply by the reciprocal:
\(2x\times \frac{1}{2}=-\frac{5}{2}\times \frac{1}{2}\)
- step8: Multiply:
\(x=-\frac{5}{4}\)
Solve the equation \( 5^{2 x+3}=0.008 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{2x+3}=0.008\)
- step1: Rewrite the expression:
\(5^{2x+3}=\frac{1}{125}\)
- step2: Rewrite the expression:
\(5^{2x+3}=5^{-3}\)
- step3: Set the exponents equal:
\(2x+3=-3\)
- step4: Move the constant to the right side:
\(2x=-3-3\)
- step5: Subtract the numbers:
\(2x=-6\)
- step6: Divide both sides:
\(\frac{2x}{2}=\frac{-6}{2}\)
- step7: Divide the numbers:
\(x=-3\)
Solve the equation \( 8^{x+2}=16^{2 x-3} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(8^{x+2}=16^{2x-3}\)
- step1: Rewrite the expression:
\(2^{3x+6}=2^{8x-12}\)
- step2: Set the exponents equal:
\(3x+6=8x-12\)
- step3: Move the expression to the left side:
\(3x-8x=-12-6\)
- step4: Add and subtract:
\(-5x=-12-6\)
- step5: Add and subtract:
\(-5x=-18\)
- step6: Change the signs:
\(5x=18\)
- step7: Divide both sides:
\(\frac{5x}{5}=\frac{18}{5}\)
- step8: Divide the numbers:
\(x=\frac{18}{5}\)
Solve the equation \( 3^{x-1}=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x-1}=1\)
- step1: Rewrite in exponential form:
\(3^{x-1}=3^{0}\)
- step2: Set the exponents equal:
\(x-1=0\)
- step3: Move the constant to the right side:
\(x=0+1\)
- step4: Remove 0:
\(x=1\)
Solve the equation \( 2.5^{x}=50 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2.5^{x}=50\)
- step1: Convert the expressions:
\(\left(\frac{5}{2}\right)^{x}=50\)
- step2: Take the logarithm of both sides:
\(\log_{\frac{5}{2}}{\left(\left(\frac{5}{2}\right)^{x}\right)}=\log_{\frac{5}{2}}{\left(50\right)}\)
- step3: Evaluate the logarithm:
\(x=\log_{\frac{5}{2}}{\left(50\right)}\)
Solve the equation \( 5^{-2}=1/(25^{x}) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{-2}=\frac{1}{\left(25^{x}\right)}\)
- step1: Evaluate:
\(5^{-2}=\frac{1}{25^{x}}\)
- step2: Rearrange the terms:
\(5^{-2}=25^{-x}\)
- step3: Swap the sides:
\(25^{-x}=5^{-2}\)
- step4: Rewrite in exponential form:
\(5^{-2x}=5^{-2}\)
- step5: Set the exponents equal:
\(-2x=-2\)
- step6: Change the signs:
\(2x=2\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{2}{2}\)
- step8: Divide the numbers:
\(x=1\)
Solve the equation \( 3^{(3 x-1)/2}=1/27 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{\frac{\left(3x-1\right)}{2}}=\frac{1}{27}\)
- step1: Remove the parentheses:
\(3^{\frac{3x-1}{2}}=\frac{1}{27}\)
- step2: Rewrite in exponential form:
\(3^{\frac{3x-1}{2}}=3^{-3}\)
- step3: Set the exponents equal:
\(\frac{3x-1}{2}=-3\)
- step4: Cross multiply:
\(3x-1=2\left(-3\right)\)
- step5: Simplify the equation:
\(3x-1=-6\)
- step6: Move the constant to the right side:
\(3x=-6+1\)
- step7: Add the numbers:
\(3x=-5\)
- step8: Divide both sides:
\(\frac{3x}{3}=\frac{-5}{3}\)
- step9: Divide the numbers:
\(x=-\frac{5}{3}\)
Solve the equation \( 4.5^{2 x}=4 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4.5^{2x}=4\)
- step1: Convert the expressions:
\(\left(\frac{9}{2}\right)^{2x}=4\)
- step2: Take the logarithm of both sides:
\(\log_{\frac{9}{2}}{\left(\left(\frac{9}{2}\right)^{2x}\right)}=\log_{\frac{9}{2}}{\left(4\right)}\)
- step3: Evaluate the logarithm:
\(2x=\log_{\frac{9}{2}}{\left(4\right)}\)
- step4: Divide both sides:
\(\frac{2x}{2}=\frac{\log_{\frac{9}{2}}{\left(4\right)}}{2}\)
- step5: Divide the numbers:
\(x=\frac{\log_{\frac{9}{2}}{\left(4\right)}}{2}\)
- step6: Simplify:
\(x=\log_{\frac{9}{2}}{\left(2\right)}\)
Solve the equation \( 5^{x(x+1)}=25 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{x\left(x+1\right)}=25\)
- step1: Rewrite in exponential form:
\(5^{x\left(x+1\right)}=5^{2}\)
- step2: Set the exponents equal:
\(x\left(x+1\right)=2\)
- step3: Expand the expression:
\(x^{2}+x=2\)
- step4: Move the expression to the left side:
\(x^{2}+x-2=0\)
- step5: Factor the expression:
\(\left(x-1\right)\left(x+2\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-1=0\\&x+2=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=1\\&x=-2\end{align}\)
- step8: Rewrite:
\(x_{1}=-2,x_{2}=1\)
Solve the equation \( 5^{2 x(x-3)}=0.20 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{2x\left(x-3\right)}=0.2\)
- step1: Rewrite in exponential form:
\(5^{2x\left(x-3\right)}=5^{-1}\)
- step2: Set the exponents equal:
\(2x\left(x-3\right)=-1\)
- step3: Expand the expression:
\(2x^{2}-6x=-1\)
- step4: Move the expression to the left side:
\(2x^{2}-6x-\left(-1\right)=0\)
- step5: Remove the parentheses:
\(2x^{2}-6x+1=0\)
- step6: Solve using the quadratic formula:
\(x=\frac{6\pm \sqrt{\left(-6\right)^{2}-4\times 2}}{2\times 2}\)
- step7: Simplify the expression:
\(x=\frac{6\pm \sqrt{\left(-6\right)^{2}-4\times 2}}{4}\)
- step8: Simplify the expression:
\(x=\frac{6\pm \sqrt{28}}{4}\)
- step9: Simplify the expression:
\(x=\frac{6\pm 2\sqrt{7}}{4}\)
- step10: Separate into possible cases:
\(\begin{align}&x=\frac{6+2\sqrt{7}}{4}\\&x=\frac{6-2\sqrt{7}}{4}\end{align}\)
- step11: Simplify the expression:
\(\begin{align}&x=\frac{3+\sqrt{7}}{2}\\&x=\frac{6-2\sqrt{7}}{4}\end{align}\)
- step12: Simplify the expression:
\(\begin{align}&x=\frac{3+\sqrt{7}}{2}\\&x=\frac{3-\sqrt{7}}{2}\end{align}\)
- step13: Rewrite:
\(x_{1}=\frac{3-\sqrt{7}}{2},x_{2}=\frac{3+\sqrt{7}}{2}\)
Here are the solutions for each equation:
### 1. Solve for \( x \):
**a)** \( 2^{2x-1} = 8 \)
Solution: \( x = 2 \)
**b)** \( 3^{\frac{3x-1}{2}} = \frac{1}{27} \)
Solution: \( x = -\frac{5}{3} \) or approximately \( x \approx -1.67 \)
**c)** \( 4^{x-1} = 32 \)
Solution: \( x = \frac{7}{2} \) or \( x = 3.5 \)
**d)** \( 9^{2x+1} = \frac{1}{27} \)
Solution: \( x = -\frac{5}{4} \) or \( x = -1.25 \)
**e)** \( 5^{-2} = \frac{1}{25^{x}} \)
Solution: \( x = 1 \)
**f)** \( 3^{x-2} = \frac{1}{3^{x}} \)
Solution: \( x = 1 \)
**g)** \( 4.16^{x} = 8 \)
Solution: \( x = 3 \log_{\frac{104}{25}}{(2)} \)
**h)** \( 2.5^{x} = 50 \)
Solution: \( x = \log_{\frac{5}{2}}{(50)} \)
**i)** \( 1 - 6^{x} = 0 \)
Solution: \( x = 0 \)
**j)** \( 10^{x} = 1 \)
Solution: \( x = 0 \)
**k)** \( 3^{x-1} = 1 \)
Solution: \( x = 1 \)
**l)** \( 4^{-x} - 16 = 0 \)
Solution: \( x = -2 \)
**m)** \( 4.5^{2x} = 4 \)
Solution: \( x = \log_{\frac{9}{2}}{(2)} \)
**n)** \( 8^{x+2} = 16^{2x-3} \)
Solution: \( x = \frac{18}{5} \) or \( x = 3.6 \)
### 2. Solve for \( x \):
**a)** \( 5^{2x+3} = 0.008 \)
Solution: \( x = -3 \)
**b)** \( 9^{2x+3} = 27^{x+5} \)
Solution: \( x_{1} = -2, x_{2} = 1 \)
**c)** \( 5^{x(x+1)} = 25 \)
Solution: \( x = -2 \)
**d)** \( 27^{x-2} = 81^{2x+1} \)
Solution: \( x = \frac{1}{2} \) or \( x = 0.5 \)
**e)** \( 2^{x+1} = (0.5)^{x-2} \)
Solution: \( x_{1} = \frac{3 - \sqrt{7}}{2}, x_{2} = \frac{3 + \sqrt{7}}{2} \)
**f)** \( 5^{2x(x-3)} = 0.20 \)
Solution: \( x = -2 \)
These solutions cover all the equations provided. If you need further clarification on any specific solution, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución