Pregunta
upstudy study bank question image url

Find \( f+g, f-g, f g \), and \( \frac{f}{g} \) Determine the domain for each function \[ f(x)=\sqrt{x} ; g(x)=x-9 \] \( (\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}}+\mathrm{x}-9 \) (Simplify your answer.) What is the domain of \( \mathrm{f}+\mathrm{g} \) ? A. The domain of \( f+g \) is \( \square \) \} (Use a comma to separate answers as needed) B. The domain of \( \mathrm{f}+\mathrm{g} \) is \( [0, \infty) \). (Type your answer in interval notation.) C. The domain of \( \mathrm{f}+\mathrm{g} \) is \( \varnothing \). \( (\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}}-\mathrm{x}+9 \) (Simplify your answer) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( [0, \infty) \). (Type your answer in interval notation.) B. The domain of \( \mathrm{f}-\mathrm{g} \) is \( \{\quad\} \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \) \( (\mathrm{fg})(\mathrm{x})= \) \( \square \) (Simplify your answer.)

Ask by George Nichols. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Addition:** - **Expression:** \( \sqrt{x} + x - 9 \) - **Domain:** \( [0, \infty) \) **Subtraction:** - **Expression:** \( \sqrt{x} - x + 9 \) - **Domain:** \( [0, \infty) \) **Multiplication:** - **Expression:** \( \sqrt{x}(x - 9) \) - **Domain:** \( [0, \infty) \) **Division:** - **Expression:** \( \frac{\sqrt{x}}{x - 9} \) - **Domain:** \( [0, 9) \cup (9, \infty) \)

Solución

Let's analyze the functions \( f(x) = \sqrt{x} \) and \( g(x) = x - 9 \) by performing various operations on them: addition, subtraction, multiplication, and division. We'll also determine the domain for each resulting function. ### 1. Addition: \( f + g \) \[ (f + g)(x) = f(x) + g(x) = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9 \] **Domain of \( f + g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). Therefore, the domain of \( f + g \) is the intersection of the domains of \( f \) and \( g \): \[ \text{Domain of } f + g = [0, \infty) \] **Answer:** **B.** The domain of \( f + g \) is \( [0, \infty) \). --- ### 2. Subtraction: \( f - g \) \[ (f - g)(x) = f(x) - g(x) = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9 \] **Domain of \( f - g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). Therefore, the domain of \( f - g \) is also the intersection of the domains of \( f \) and \( g \): \[ \text{Domain of } f - g = [0, \infty) \] **Answer:** **A.** The domain of \( f - g \) is \( [0, \infty) \). --- ### 3. Multiplication: \( f \cdot g \) \[ (fg)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot (x - 9) = \sqrt{x}(x - 9) \] **Domain of \( f \cdot g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). Therefore, the domain of \( fg \) is: \[ \text{Domain of } fg = [0, \infty) \] --- ### 4. Division: \( \frac{f}{g} \) \[ \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x - 9} \] **Domain of \( \frac{f}{g} \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** cannot be zero to avoid division by zero. So, \( x - 9 \neq 0 \Rightarrow x \neq 9 \). Combining these conditions: \[ \text{Domain of } \frac{f}{g} = [0, 9) \cup (9, \infty) \] --- ### Summary of Results 1. **\( f + g \):** - **Expression:** \( \sqrt{x} + x - 9 \) - **Domain:** \( [0, \infty) \) 2. **\( f - g \):** - **Expression:** \( \sqrt{x} - x + 9 \) - **Domain:** \( [0, \infty) \) 3. **\( fg \):** - **Expression:** \( \sqrt{x}(x - 9) \) - **Domain:** \( [0, \infty) \) 4. **\( \frac{f}{g} \):** - **Expression:** \( \frac{\sqrt{x}}{x - 9} \) - **Domain:** \( [0, 9) \cup (9, \infty) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's dive into the calculations! For \( f+g \): \[ (f+g)(x) = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9 \] The domain of \( f+g \) is limited by the square root function, which requires \( x \geq 0 \). Therefore, the domain is: B. The domain of \( f+g \) is \( [0, \infty) \). For \( f-g \): \[ (f-g)(x) = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9 \] Again, the square root function restricts \( x \) to \( \geq 0 \). Thus, the domain for \( f-g \) is: A. The domain of \( f-g \) is \( [0, \infty) \). Now for the product \( fg \): \[ (fg)(x) = \sqrt{x} \cdot (x - 9) = \sqrt{x}(x - 9) \] The domain is influenced by both functions, so \( x \) must be non-negative and also greater than or equal to 9 to keep the product real: B. The domain of \( fg \) is \( [0, 9) \cup (9, \infty) \). Lastly, let's consider the division: \[ \frac{f}{g}(x) = \frac{\sqrt{x}}{x - 9} \] This function is defined as long as \( g(x) \neq 0 \); therefore, \( x \neq 9 \) and \( x \) must still be non-negative: C. The domain of \( \frac{f}{g} \) is \( [0, 9) \cup (9, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad