Pregunta
upstudy study bank question image url

The function \( f(x)=\left(\frac{1}{5}\right)^{x} \) is translated up 4 units. Which equation represents the translated function? \( g(x)=\left(\frac{1}{5}\right)^{x-4} \) \( g(x)=\left(\frac{1}{5}\right)^{x+4} \) \( g(x)=\left(\frac{1}{5}\right)^{x}+4 \) \( g(x)=\left[\frac{1}{5}\right)^{x}-4 \)

Ask by Chen Barber. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The translated function is \( g(x) = \left(\frac{1}{5}\right)^x + 4 \).

Solución

To translate the function \( f(x) = \left(\frac{1}{5}\right)^x \) **up** by 4 units, you need to add 4 to the original function. This shifts the entire graph of the function vertically upwards without altering its shape or horizontal position. Here's the breakdown of the options: 1. **\( g(x) = \left(\frac{1}{5}\right)^{x-4} \)**: This represents a **horizontal** shift to the **right** by 4 units. 2. **\( g(x) = \left(\frac{1}{5}\right)^{x+4} \)**: This represents a **horizontal** shift to the **left** by 4 units. 3. **\( g(x) = \left(\frac{1}{5}\right)^x + 4 \)**: This correctly represents a **vertical** shift **upwards** by 4 units. 4. **\( g(x) = \left(\frac{1}{5}\right)^x - 4 \)**: This represents a **vertical** shift **downwards** by 4 units. Therefore, the correct equation representing the translated function is: \[ g(x) = \left(\frac{1}{5}\right)^x + 4 \] **Answer:** \( g(x)=\left(\frac{1}{5}\right)^{x}+4 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When you translate a function upward by a certain number of units, you simply add that number to the entire function. In this case, you start with \( f(x) = \left(\frac{1}{5}\right)^{x} \) and translate it up 4 units, resulting in \( g(x) = \left(\frac{1}{5}\right)^{x} + 4 \). So, the correct representation of the translated function is \( g(x)=\left(\frac{1}{5}\right)^{x}+4 \). As a fun fact, the process of translating functions is often graphically represented on a coordinate plane. Imagine lifting your favorite ice cream cone to enjoy it more—you just raise it up without changing its flavor or shape! That's what happens with function translations. Another interesting point is that the concept of translating functions is applicable in various fields, such as physics when analyzing the displacement of objects or in economics when adjusting curves to reflect new data. Engaging with these applications can make math feel much more relevant and exciting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad