Pregunta
What are the square roots of \( \frac{9}{2500} ? \) Write your answers as proper fractions, improper fractions, or whole numbers. Submit
Ask by Perkins Lang. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The square roots of \( \frac{9}{2500} \) are \( \frac{3}{50} \) and \( -\frac{3}{50} \).
Solución
To find the square roots of \( \frac{9}{2500} \), we can take the square root of the numerator and the denominator separately:
\[
\sqrt{\frac{9}{2500}} = \frac{\sqrt{9}}{\sqrt{2500}} = \frac{3}{50}
\]
However, both positive and negative values are square roots of a number. Therefore, the square roots of \( \frac{9}{2500} \) are:
\[
\frac{3}{50} \quad \text{and} \quad -\frac{3}{50}
\]
**Answer:** \( \frac{3}{50} \) and \( -\frac{3}{50} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The square roots of \( \frac{9}{2500} \) can be calculated by taking the square roots of the numerator and the denominator separately. The square root of 9 is 3, and the square root of 2500 is 50. Therefore, the square roots of \( \frac{9}{2500} \) are: \[ \frac{\sqrt{9}}{\sqrt{2500}} = \frac{3}{50} \] Since we can also have a negative square root, the results are: \[ \frac{3}{50} \quad \text{and} \quad -\frac{3}{50} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium