Round each fraction to \( 0, \frac{1}{2} \), or 1 . Use a number line if needed. \( \begin{array}{ll}\text { 1. } \frac{5}{9} \approx & \text { 2. } \frac{1}{14} \approx \\ \text { 3. } \frac{12}{13} \approx\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To round each fraction, we can think about where they are located on a number line between \(0\) and \(1\). For \( \frac{5}{9} \), locate it on a number line. It’s approximately \(0.555\), which is closer to \( \frac{1}{2} \) than to \(0\) or \(1\). Therefore, \( \frac{5}{9} \approx \frac{1}{2} \). Next, \( \frac{1}{14} \) is about \(0.071\), which is much closer to \(0\) than to \( \frac{1}{2} \) or \(1\). Thus, \( \frac{1}{14} \approx 0 \). Finally, \( \frac{12}{13} \) is approximately \(0.923\), placing it very close to \(1\). So, we conclude \( \frac{12}{13} \approx 1 \). Summing up, we have: 1. \( \frac{5}{9} \approx \frac{1}{2} \) 2. \( \frac{1}{14} \approx 0 \) 3. \( \frac{12}{13} \approx 1 \)