Responder
For Problem 4: \( -x^{2} - x - 2 \)
For Problem 5: \( 4x^{2} + 4x + 5 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4x^{3}+16x^{2}+17x+15=0\)
- step1: Factor the expression:
\(\left(x+3\right)\left(4x^{2}+4x+5\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x+3=0\\&4x^{2}+4x+5=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=-3\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=-3\)
Solve the equation \( -x^{3}-3 x^{2}-4 x+3=0 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve for \(x\) in the complex numbers system:
\(-x^{3}-3x^{2}-4x+3=0\)
- step1: Calculate:
\(\begin{align}&x\approx 0.51598\\&x\approx -1.75799+1.650348i\\&x\approx -1.75799-1.650348i\end{align}\)
- step2: Rewrite:
\(x_{1}\approx -1.75799-1.650348i,x_{2}\approx -1.75799+1.650348i,x_{3}\approx 0.51598\)
- step3: Remove the complex number(s):
\(x\approx 0.51598\)
Let's solve the problems step by step.
### Problem 4: Divide \( -x^{3}-3 x^{2}-4 x+3 \) by \( x+2 \) using synthetic division.
1. **Set up synthetic division**:
- The divisor is \( x + 2 \), so we use \( -2 \) for synthetic division.
- The coefficients of the polynomial \( -x^{3}-3 x^{2}-4 x+3 \) are \( -1, -3, -4, 3 \).
2. **Perform synthetic division**:
- Write down the coefficients:
\[
\begin{array}{r|rrrr}
-2 & -1 & -3 & -4 & 3 \\
& & & & \\
\end{array}
\]
- Bring down the first coefficient:
\[
\begin{array}{r|rrrr}
-2 & -1 & -3 & -4 & 3 \\
& & & & \\
& -1 & & & \\
\end{array}
\]
- Multiply \( -2 \) by \( -1 \) and add to the next coefficient:
\[
\begin{array}{r|rrrr}
-2 & -1 & -3 & -4 & 3 \\
& & 2 & & \\
& -1 & -1 & & \\
\end{array}
\]
- Repeat the process:
- Multiply \( -2 \) by \( -1 \) and add to \( -4 \):
\[
\begin{array}{r|rrrr}
-2 & -1 & -3 & -4 & 3 \\
& & 2 & 2 & \\
& -1 & -1 & -2 & \\
\end{array}
\]
- Multiply \( -2 \) by \( -2 \) and add to \( 3 \):
\[
\begin{array}{r|rrrr}
-2 & -1 & -3 & -4 & 3 \\
& & 2 & 2 & 6 \\
& -1 & -1 & -2 & 0 \\
\end{array}
\]
3. **Result**:
- The quotient is \( -x^{2} - x - 2 \) and the remainder is \( 0 \).
- Therefore, the answer is \( -x^{2} - x - 2 \).
### Problem 5: Divide \( 4 x^{3}+16 x^{2}+17 x+15 \) by \( x+3 \) using synthetic division.
1. **Set up synthetic division**:
- The divisor is \( x + 3 \), so we use \( -3 \) for synthetic division.
- The coefficients of the polynomial \( 4 x^{3}+16 x^{2}+17 x+15 \) are \( 4, 16, 17, 15 \).
2. **Perform synthetic division**:
- Write down the coefficients:
\[
\begin{array}{r|rrrr}
-3 & 4 & 16 & 17 & 15 \\
& & & & \\
\end{array}
\]
- Bring down the first coefficient:
\[
\begin{array}{r|rrrr}
-3 & 4 & 16 & 17 & 15 \\
& & & & \\
& 4 & & & \\
\end{array}
\]
- Multiply \( -3 \) by \( 4 \) and add to the next coefficient:
\[
\begin{array}{r|rrrr}
-3 & 4 & 16 & 17 & 15 \\
& & -12 & & \\
& 4 & 4 & & \\
\end{array}
\]
- Repeat the process:
- Multiply \( -3 \) by \( 4 \) and add to \( 17 \):
\[
\begin{array}{r|rrrr}
-3 & 4 & 16 & 17 & 15 \\
& & -12 & -12 & \\
& 4 & 4 & 5 & \\
\end{array}
\]
- Multiply \( -3 \) by \( 5 \) and add to \( 15 \):
\[
\begin{array}{r|rrrr}
-3 & 4 & 16 & 17 & 15 \\
& & -12 & -12 & -15 \\
& 4 & 4 & 5 & 0 \\
\end{array}
\]
3. **Result**:
- The quotient is \( 4x^{2} + 4x + 5 \) and the remainder is \( 0 \).
- Therefore, the answer is \( 4x^{2} + 4x + 5 \).
### Final Answers:
- For Problem 4: \( -x^{2} - x - 2 \)
- For Problem 5: \( 4x^{2} + 4x + 5 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución