Pregunta
upstudy study bank question image url

4. Divide \( -x^{3}-3 x^{2}-4 x+3 \) by \( x+2 \). \( \begin{array}{ll}\text { a. }-x^{2}-x-2 \\ \text { b. }-x^{2}-5 x-6 & \text { c. }-x^{2}-5 x-6, \mathrm{R}-1 \\ \text { d. }-x^{2}-x-2, \mathrm{R} 7\end{array} \) Divide using synthetic division. \( \begin{array}{ll}\text { 5. Divide } 4 x^{3}+16 x^{2}+17 x+15 \text { by }(x+3) . & \text { c. }-4 x^{2}-28 x-29, \mathrm{R}-30 \\ \text { a. }-4 x^{2}-4 x-5 & \text { d. } 4 x^{2}+28 x+29, \mathrm{R} 30 \\ \text { b. } 4 x^{2}+4 x+5 & \text { (. }\end{array} \)

Ask by Mckenzie Bush. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For Problem 4: \( -x^{2} - x - 2 \) For Problem 5: \( 4x^{2} + 4x + 5 \)

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(4x^{3}+16x^{2}+17x+15=0\) - step1: Factor the expression: \(\left(x+3\right)\left(4x^{2}+4x+5\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x+3=0\\&4x^{2}+4x+5=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=-3\\&x \notin \mathbb{R}\end{align}\) - step4: Find the union: \(x=-3\) Solve the equation \( -x^{3}-3 x^{2}-4 x+3=0 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve for \(x\) in the complex numbers system: \(-x^{3}-3x^{2}-4x+3=0\) - step1: Calculate: \(\begin{align}&x\approx 0.51598\\&x\approx -1.75799+1.650348i\\&x\approx -1.75799-1.650348i\end{align}\) - step2: Rewrite: \(x_{1}\approx -1.75799-1.650348i,x_{2}\approx -1.75799+1.650348i,x_{3}\approx 0.51598\) - step3: Remove the complex number(s): \(x\approx 0.51598\) Let's solve the problems step by step. ### Problem 4: Divide \( -x^{3}-3 x^{2}-4 x+3 \) by \( x+2 \) using synthetic division. 1. **Set up synthetic division**: - The divisor is \( x + 2 \), so we use \( -2 \) for synthetic division. - The coefficients of the polynomial \( -x^{3}-3 x^{2}-4 x+3 \) are \( -1, -3, -4, 3 \). 2. **Perform synthetic division**: - Write down the coefficients: \[ \begin{array}{r|rrrr} -2 & -1 & -3 & -4 & 3 \\ & & & & \\ \end{array} \] - Bring down the first coefficient: \[ \begin{array}{r|rrrr} -2 & -1 & -3 & -4 & 3 \\ & & & & \\ & -1 & & & \\ \end{array} \] - Multiply \( -2 \) by \( -1 \) and add to the next coefficient: \[ \begin{array}{r|rrrr} -2 & -1 & -3 & -4 & 3 \\ & & 2 & & \\ & -1 & -1 & & \\ \end{array} \] - Repeat the process: - Multiply \( -2 \) by \( -1 \) and add to \( -4 \): \[ \begin{array}{r|rrrr} -2 & -1 & -3 & -4 & 3 \\ & & 2 & 2 & \\ & -1 & -1 & -2 & \\ \end{array} \] - Multiply \( -2 \) by \( -2 \) and add to \( 3 \): \[ \begin{array}{r|rrrr} -2 & -1 & -3 & -4 & 3 \\ & & 2 & 2 & 6 \\ & -1 & -1 & -2 & 0 \\ \end{array} \] 3. **Result**: - The quotient is \( -x^{2} - x - 2 \) and the remainder is \( 0 \). - Therefore, the answer is \( -x^{2} - x - 2 \). ### Problem 5: Divide \( 4 x^{3}+16 x^{2}+17 x+15 \) by \( x+3 \) using synthetic division. 1. **Set up synthetic division**: - The divisor is \( x + 3 \), so we use \( -3 \) for synthetic division. - The coefficients of the polynomial \( 4 x^{3}+16 x^{2}+17 x+15 \) are \( 4, 16, 17, 15 \). 2. **Perform synthetic division**: - Write down the coefficients: \[ \begin{array}{r|rrrr} -3 & 4 & 16 & 17 & 15 \\ & & & & \\ \end{array} \] - Bring down the first coefficient: \[ \begin{array}{r|rrrr} -3 & 4 & 16 & 17 & 15 \\ & & & & \\ & 4 & & & \\ \end{array} \] - Multiply \( -3 \) by \( 4 \) and add to the next coefficient: \[ \begin{array}{r|rrrr} -3 & 4 & 16 & 17 & 15 \\ & & -12 & & \\ & 4 & 4 & & \\ \end{array} \] - Repeat the process: - Multiply \( -3 \) by \( 4 \) and add to \( 17 \): \[ \begin{array}{r|rrrr} -3 & 4 & 16 & 17 & 15 \\ & & -12 & -12 & \\ & 4 & 4 & 5 & \\ \end{array} \] - Multiply \( -3 \) by \( 5 \) and add to \( 15 \): \[ \begin{array}{r|rrrr} -3 & 4 & 16 & 17 & 15 \\ & & -12 & -12 & -15 \\ & 4 & 4 & 5 & 0 \\ \end{array} \] 3. **Result**: - The quotient is \( 4x^{2} + 4x + 5 \) and the remainder is \( 0 \). - Therefore, the answer is \( 4x^{2} + 4x + 5 \). ### Final Answers: - For Problem 4: \( -x^{2} - x - 2 \) - For Problem 5: \( 4x^{2} + 4x + 5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle the first division problem, you'll want to set up synthetic division using the root of \( x + 2 = 0 \), which is \( x = -2 \). By arranging the coefficients of the polynomial \(-1, -3, -4, 3\) and working through the synthetic division process, you'll find that the quotient is \(-x^{2} - 1x - 2\) with a remainder of 7. So it seems the right answer is \(d\). For the second division, use \(x = -3\) in synthetic division with the coefficients \(4, 16, 17, 15\). After performing the synthetic division steps, you'll discover that the result is \(4x^{2} + 4x + 5\) and a remainder of 30, matching choice b. Synthetic division is a magical shortcut that makes polynomial division not only easier but also quicker, leaving you more time for fun math adventures!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad