\( 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \), first remember that any term raised to the zero power equals 1, so \( a^0 = 1 \). This reduces our expression to \( \frac{12 b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \). Now, we can simplify the coefficients: \( \frac{12}{15} = \frac{4}{5} \). Next, apply the rules of exponents. For \( b^3 \) and \( b^5 \), we subtract the exponents: \( 3 - 5 = -2 \), giving us \( b^{-2} \). For \( c^{-1} \) and \( c^{-3} \), we again subtract the exponents: \( -1 - (-3) = 2 \), resulting in \( c^{2} \). Then, for \( a^{-2} \) in the denominator, it transforms into \( a^{2} \) when moved to the numerator. Thus, putting it all together, the simplified expression is: \[ \frac{4 c^{2}}{5 a^{2} b^{2}}. \]