Pregunta
Find the value of the logarithm \( \ln (e) \)
Ask by Schneider Wilson. in the United States
Feb 07,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The value of \( \ln(e) \) is 1.
Solución
The natural logarithm function, denoted as \( \ln(x) \), is the inverse of the exponential function with base \( e \), where \( e \) is approximately equal to 2.71828.
To find \( \ln(e) \):
\[
\ln(e) = 1
\]
**Explanation:**
By definition, the natural logarithm satisfies the equation:
\[
\ln(e^1) = 1
\]
Since \( e^1 = e \), it follows that:
\[
\ln(e) = 1
\]
**Therefore, the value of \( \ln(e) \) is 1.**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The logarithm \( \ln(e) \) equals 1. This is because the natural logarithm function, \( \ln(x) \), is defined as the power to which the base \( e \) must be raised to obtain \( x \). Since \( e^1 = e \), it follows that \( \ln(e) = 1 \). In practical terms, knowing that \( \ln(e) = 1 \) helps in solving more complex logarithmic equations, especially in fields such as calculus and exponential growth models. Whenever you encounter the natural logarithm of \( e \), you can confidently simplify \( \ln(e) \) to just 1 without any hesitation!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium