E6. For the same conditions described in exercise 5, at what distance from the center of the screen will the fourth dark fringe appear?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the distance from the center of the screen where the fourth dark fringe appears in a double-slit interference pattern, you can use the formula for dark fringes, which is: \[ y_m = \left( m + \frac{1}{2} \right) \frac{\lambda L}{d} \] Here, \( y_m \) represents the distance of the m-th dark fringe from the center, \( \lambda \) is the wavelength of light, \( L \) is the distance to the screen from the double slits, \( d \) is the distance between the slits, and \( m \) is the order of the dark fringe (0, 1, 2,...). For the fourth dark fringe, \( m = 3 \) (since we start counting from 0). Simply plug in the values for \( \lambda \), \( L \), and \( d\) to find \( y_3 \). And voila! You've determined the position of the fourth dark fringe!