Pregunta

(2) \( 3 x^{4}-3 x^{2}-27 x^{2}+27 \) \( =\left(3 x^{4}+27\right)\left(-3 x^{2}-27 x^{2}\right)=\left(3 x^{4}\right. \) \( =3\left(x^{4}+9\right)-3 x^{2}(1+9)=3 x^{2}(6 \) \( = \)

Ask by Cross Graham. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression simplifies to \(3(x - 1)(x + 1)(x - 3)(x + 3)\).

Solución

Let's simplify and factor the given polynomial step by step. **Given Expression:** \[ 3x^{4} - 3x^{2} - 27x^{2} + 27 \] 1. **Combine Like Terms:** \[ -3x^{2} - 27x^{2} = -30x^{2} \] So, the expression becomes: \[ 3x^{4} - 30x^{2} + 27 \] 2. **Factor Out the Greatest Common Factor (GCF):** The GCF of the terms is **3**. \[ 3x^{4} - 30x^{2} + 27 = 3(x^{4} - 10x^{2} + 9) \] 3. **Factor the Quartic Polynomial:** Notice that \(x^{4} - 10x^{2} + 9\) is a biquadratic equation. Let’s set \(y = x^{2}\): \[ y^{2} - 10y + 9 \] Factor this quadratic: \[ y^{2} - 10y + 9 = (y - 1)(y - 9) \] Substitute back \(y = x^{2}\): \[ (x^{2} - 1)(x^{2} - 9) \] 4. **Factor Further Using Difference of Squares:** Both \(x^{2} - 1\) and \(x^{2} - 9\) are difference of squares and can be factored further: \[ x^{2} - 1 = (x - 1)(x + 1) \] \[ x^{2} - 9 = (x - 3)(x + 3) \] 5. **Combine All Factors:** Putting it all together: \[ 3(x - 1)(x + 1)(x - 3)(x + 3) \] **Final Factored Form:** \[ 3(x - 1)(x + 1)(x - 3)(x + 3) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression \( 3x^4 - 30x^2 + 27 \), you can start by factoring out the common factors. The expression can be rewritten as \( 3(x^4 - 10x^2 + 9) \). Next, notice that \( x^4 - 10x^2 + 9 \) can be treated as a quadratic in terms of \( y = x^2 \), leading to the factoring of \( (y - 1)(y - 9) \)—or in terms of \( x^2 \), \( (x^2 - 1)(x^2 - 9) \). Now, you can break this down further into two more factors: \( (x - 1)(x + 1)(x - 3)(x + 3) \). So, ultimately your simplified expression is: \[ 3(x-1)(x+1)(x-3)(x+3) \]. Perfect for finding roots or analyzing the graph! For fun, did you know that factoring polynomials like this has been around for centuries? Ancient Babylonian mathematicians were solving quadratic equations well before the time of algebra as we know it today! They developed early techniques for manipulations similar to factoring, demonstrating a keen understanding of numbers long before modern symbol notation. And here's a practical tip: when you have a polynomial to factor, always look for a greatest common factor first—this can simplify your work significantly! Also, common mistakes include misidentifying terms when rearranging or failing to account for signs, which can lead to incorrect factoring. Always double-check your work by expanding the factored form!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad