Pregunta
upstudy study bank question image url

Question 4 The sum of two numbers is 12 and the sum of the squares of these two numbers is \( 21 / 2 \) times their product. Doternine the numbers. Question 5

Ask by Tyler Clark. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two numbers are \( \frac{30+6\sqrt{17}}{5} \) and \( \frac{30-6\sqrt{17}}{5} \).

Solución

To solve this problem, we can set up a system of equations based on the given information. Let's denote the two numbers as \( x \) and \( y \). From the first piece of information, we have: \[ x + y = 12 \] From the second piece of information, we have: \[ x^2 + y^2 = \frac{21}{2}xy \] We can solve this system of equations to find the values of \( x \) and \( y \). Let's solve the system of equations. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+y=12\\x^{2}+y^{2}=\frac{21}{2}xy\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=12-y\\x^{2}+y^{2}=\frac{21}{2}xy\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left(12-y\right)^{2}+y^{2}=\frac{21}{2}\left(12-y\right)y\) - step3: Simplify: \(144-24y+2y^{2}=\frac{21}{2}y\left(12-y\right)\) - step4: Move the expression to the left side: \(144-24y+2y^{2}-\frac{21}{2}y\left(12-y\right)=0\) - step5: Calculate: \(144-150y+\frac{25}{2}y^{2}=0\) - step6: Rewrite in standard form: \(\frac{25}{2}y^{2}-150y+144=0\) - step7: Multiply both sides: \(2\left(\frac{25}{2}y^{2}-150y+144\right)=2\times 0\) - step8: Calculate: \(25y^{2}-300y+288=0\) - step9: Solve using the quadratic formula: \(y=\frac{300\pm \sqrt{\left(-300\right)^{2}-4\times 25\times 288}}{2\times 25}\) - step10: Simplify the expression: \(y=\frac{300\pm \sqrt{\left(-300\right)^{2}-4\times 25\times 288}}{50}\) - step11: Simplify the expression: \(y=\frac{300\pm \sqrt{300^{2}-28800}}{50}\) - step12: Simplify the expression: \(y=\frac{300\pm 60\sqrt{17}}{50}\) - step13: Separate into possible cases: \(\begin{align}&y=\frac{300+60\sqrt{17}}{50}\\&y=\frac{300-60\sqrt{17}}{50}\end{align}\) - step14: Simplify the expression: \(\begin{align}&y=\frac{30+6\sqrt{17}}{5}\\&y=\frac{300-60\sqrt{17}}{50}\end{align}\) - step15: Simplify the expression: \(\begin{align}&y=\frac{30+6\sqrt{17}}{5}\\&y=\frac{30-6\sqrt{17}}{5}\end{align}\) - step16: Evaluate the logic: \(y=\frac{30+6\sqrt{17}}{5}\cup y=\frac{30-6\sqrt{17}}{5}\) - step17: Rearrange the terms: \(\left\{ \begin{array}{l}x=12-y\\y=\frac{30+6\sqrt{17}}{5}\end{array}\right.\cup \left\{ \begin{array}{l}x=12-y\\y=\frac{30-6\sqrt{17}}{5}\end{array}\right.\) - step18: Calculate: \(\left\{ \begin{array}{l}x=\frac{30-6\sqrt{17}}{5}\\y=\frac{30+6\sqrt{17}}{5}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{30+6\sqrt{17}}{5}\\y=\frac{30-6\sqrt{17}}{5}\end{array}\right.\) - step19: Calculate: \(\left\{ \begin{array}{l}x=\frac{30+6\sqrt{17}}{5}\\y=\frac{30-6\sqrt{17}}{5}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{30-6\sqrt{17}}{5}\\y=\frac{30+6\sqrt{17}}{5}\end{array}\right.\) - step20: Check the solution: \(\left\{ \begin{array}{l}x=\frac{30+6\sqrt{17}}{5}\\y=\frac{30-6\sqrt{17}}{5}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{30-6\sqrt{17}}{5}\\y=\frac{30+6\sqrt{17}}{5}\end{array}\right.\) - step21: Rewrite: \(\left(x,y\right) = \left(\frac{30+6\sqrt{17}}{5},\frac{30-6\sqrt{17}}{5}\right)\cup \left(x,y\right) = \left(\frac{30-6\sqrt{17}}{5},\frac{30+6\sqrt{17}}{5}\right)\) The solution to the system of equations is: \[ (x, y) = \left(\frac{30+6\sqrt{17}}{5}, \frac{30-6\sqrt{17}}{5}\right) \text{ or } (x, y) = \left(\frac{30-6\sqrt{17}}{5}, \frac{30+6\sqrt{17}}{5}\right) \] Therefore, the two numbers are \( \frac{30+6\sqrt{17}}{5} \) and \( \frac{30-6\sqrt{17}}{5} \), or \( \frac{30-6\sqrt{17}}{5} \) and \( \frac{30+6\sqrt{17}}{5} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let the two numbers be \( x \) and \( y \). From the first condition, we have \( x + y = 12 \). The second condition states that the sum of the squares is \( \frac{21}{2} \) times their product, or \( x^2 + y^2 = \frac{21}{2}xy \). We can rewrite the sum of squares with the identity \( x^2 + y^2 = (x+y)^2 - 2xy \): \[ x^2 + y^2 = 12^2 - 2xy = 144 - 2xy. \] Setting this equal to \( \frac{21}{2}xy \), we get: \[ 144 - 2xy = \frac{21}{2}xy. \] To eliminate fractions, multiply through by 2: \[ 288 - 4xy = 21xy. \] Combining like terms gives: \[ 288 = 25xy \quad \Rightarrow \quad xy = \frac{288}{25}. \] Now, we have a system of equations with \( x+y = 12 \) and \( xy = \frac{288}{25} \). We can find \( x \) and \( y \) as the roots of the quadratic \( t^2 - (x+y)t + xy = 0 \) or: \[ t^2 - 12t + \frac{288}{25} = 0. \] Solving this using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{12 \pm \sqrt{144 - \frac{1152}{25}}}{2} = \frac{12 \pm \sqrt{\frac{3600 - 1152}{25}}}{2} = \frac{12 \pm \sqrt{\frac{2448}{25}}}{2}. \] Simplifying the square root gives us: \[ t = \frac{12 \pm \frac{\sqrt{2448}}{5}}{2} = 6 \pm \frac{\sqrt{2448}}{10}. \] To find \( \sqrt{2448} = \sqrt{4 \times 612} = 2\sqrt{612} = 2 \times 6\sqrt{17} \), so finally: \[ t = 6 \pm \frac{12\sqrt{17}}{10} = 6 \pm \frac{6\sqrt{17}}{5}. \] Thus the two numbers are \( x = 6 + \frac{6\sqrt{17}}{5} \) and \( y = 6 - \frac{6\sqrt{17}}{5} \). --- Now on to Question 5! What's your next challenge?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad