Pregunta
upstudy study bank question image url

a Math Olympiad quiz, 5 points are awarded for a correct answer and 2 points are ducted for a wrong answer or if a question is left unanswered. Shirley attempted all 30 estions and her total score for the quiz was not more than 66 . Find the maximum mber of correct answers she obtained.

Ask by Murphy Howell. in Singapore
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Shirley can have a maximum of 18 correct answers.

Solución

Let's carefully analyze the problem step by step. **Given:** - Total questions: 30 - Scoring rules: - Correct answer: +5 points - Wrong answer or unanswered: -2 points - Shirley attempted all 30 questions. - Total score: ≤ 66 points **Let:** - \( c \) = number of correct answers - \( 30 - c \) = number of wrong answers (since all questions were attempted) **Total Score Calculation:** \[ \text{Total Score} = 5c + (-2)(30 - c) \] Simplify the equation: \[ 5c - 2(30 - c) = 5c - 60 + 2c = 7c - 60 \] Given that the total score is not more than 66: \[ 7c - 60 \leq 66 \] \[ 7c \leq 126 \] \[ c \leq 18 \] **Conclusion:** The maximum number of correct answers Shirley could have is **18**. **Verification:** If \( c = 18 \): \[ \text{Total Score} = 7(18) - 60 = 126 - 60 = 66 \] This satisfies the condition of the total score being not more than 66. **Answer:** 18

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, let's denote the number of correct answers Shirley gave as \( c \) and the number of wrong answers as \( w \). Since she attempted all 30 questions, we have: 1. \( c + w = 30 \) For scoring, penalties are applied to incorrect answers and unanswered questions. Since she didn't leave any questions unanswered but received penalties for incorrect answers, her total score can be expressed as: 2. \( \text{Total Score} = 5c - 2w \) Given that her total score was not more than 66, we can set up an inequality: 3. \( 5c - 2w \leq 66 \) From equation (1), we can substitute \( w = 30 - c \) into equation (3): \[ 5c - 2(30 - c) \leq 66 \] This simplifies to: \[ 5c - 60 + 2c \leq 66 \] Combining like terms gives: \[ 7c - 60 \leq 66 \] Adding 60 to both sides results in: \[ 7c \leq 126 \] Dividing by 7 leads to: \[ c \leq 18 \] Now we can conclude that the maximum number of correct answers Shirley could have obtained is 18. In this case, she would have 12 wrong answers (since \( w = 30 - c = 30 - 18 \)), and we can check the score: \[ \text{Score} = 5(18) - 2(12) = 90 - 24 = 66 \] Therefore, Shirley’s maximum number of correct answers is **18**!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad