Pregunta
upstudy study bank question image url

Which set contains an irrational number? \( \begin{array}{l}\{0,1,2,3,-1\} \\ \{0.17, \sqrt{3}, 2 . \overline{5}, \sqrt{4}\} \\ \left\{\frac{1}{2}, \frac{3}{5}, \frac{15}{3},-\frac{7}{2}, 1 \frac{5}{6}\right\} \\ \{\sqrt{100}, 0.125125125,-1.0888\}\end{array} \)

Ask by Tran Fernandez. in the United Kingdom
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Set B contains an irrational number, which is \(\sqrt{3}\).

Solución

To determine which set contains an irrational number, let's analyze each set individually. 1. **Set A: \(\{0, 1, 2, 3, -1\}\)** - All elements are integers, which are rational numbers. 2. **Set B: \(\{0.17, \sqrt{3}, 2.\overline{5}, \sqrt{4}\}\)** - **0.17** is a rational number (\( \frac{17}{100} \)). - **\(\sqrt{3}\)** is an **irrational** number. - **\(2.\overline{5}\)** (which represents \(2.5555...\)) is a rational number (\(\frac{25}{9}\)). - **\(\sqrt{4}\)** is a rational number (\(2\)). 3. **Set C: \(\left\{\frac{1}{2}, \frac{3}{5}, \frac{15}{3}, -\frac{7}{2}, 1 \frac{5}{6}\right\}\)** - All elements are fractions or integers, which are rational numbers. 4. **Set D: \(\{\sqrt{100}, 0.125125125, -1.0888\}\)** - **\(\sqrt{100}\)** is a rational number (\(10\)). - **0.125125125...** is a repeating decimal, which is rational (\(\frac{125}{999}\)). - **-1.0888...** is also a repeating decimal, which is rational. **Conclusion:** Only **Set B** contains an irrational number, which is \(\sqrt{3}\). **Answer:** \(\{0.17, \sqrt{3}, 2.\overline{5}, \sqrt{4}\}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the second set, the presence of \( \sqrt{3} \) makes it the only one that contains an irrational number. While other numbers in the set are either rational or whole numbers, \( \sqrt{3} \) cannot be expressed as a fraction of two integers, which is the hallmark of irrational numbers. The first set is composed entirely of integers, the third set includes only fractions, and the fourth set contains a perfect square and a repeating decimal, both of which are rational. So, when seeking that elusive irrational number, it's all about \( \sqrt{3} \) in the second set!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad