Pregunta
upstudy study bank question image url

(i) The sum of the first three terms of an arithmetie sequence is 36 and their product is 1140 . Determine the three terms. (o) A certain sequence has a constant second difference of 8 . The sixth term of the sequence is 172 and the tenth term is 452 . Determine the general term. (p) The sum of the first \( n \) terms of a series is given by \( S_{n}=\frac{n}{4}(7-2 n) \). (1) Calculate the sum of the first 30 terms of this series. (1)

Ask by Ramos Blake. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(i) The three terms of the arithmetic sequence are 5, 12, and 19. (ii) The general term of the sequence is \( a_n = -178 + 70(n - 1) \). (iii) The sum of the first 30 terms of the series is -397.5.

Solución

(i) Let's denote the first term of the arithmetic sequence as \(a\) and the common difference as \(d\). Given that the sum of the first three terms is 36, we can write the equation: \[ a + (a + d) + (a + 2d) = 36 \] \[ 3a + 3d = 36 \] \[ a + d = 12 \] Also, the product of the first three terms is 1140, so we have: \[ a(a + d)(a + 2d) = 1140 \] Now, we need to solve these equations to find the values of \(a\) and \(d\). (ii) For the sequence with a constant second difference of 8, we can denote the first term as \(a\) and the common difference as \(d\). Given that the sixth term is 172 and the tenth term is 452, we can write the equations: \[ a + 5d = 172 \] \[ a + 9d = 452 \] We can solve these equations to find the values of \(a\) and \(d\). (iii) For the series with the sum of the first \(n\) terms given by \(S_n = \frac{n}{4}(7 - 2n)\), we can calculate the sum of the first 30 terms by substituting \(n = 30\) into the formula. Calculate the value by following steps: - step0: Calculate: \(\frac{30}{4}\left(7-2\times 30\right)\) - step1: Multiply the numbers: \(\frac{30}{4}\left(7-60\right)\) - step2: Subtract the numbers: \(\frac{30}{4}\left(-53\right)\) - step3: Reduce the fraction: \(\frac{15}{2}\left(-53\right)\) - step4: Multiply the numbers: \(-\frac{15}{2}\times 53\) - step5: Multiply: \(-\frac{15\times 53}{2}\) - step6: Multiply: \(-\frac{795}{2}\) (i) The first term of the arithmetic sequence is \(a = 12 - d\). Substitute \(a = 12 - d\) into the equation \(a(a + d)(a + 2d) = 1140\): \((12 - d)(12 - d + d)(12 - d + 2d) = 1140\) \(12(12 - d)(12 + d) = 1140\) \(12(144 - d^2) = 1140\) \(1728 - 12d^2 = 1140\) \(12d^2 = 588\) \(d^2 = 49\) \(d = \pm 7\) Substitute \(d = 7\) into \(a + d = 12\): \(a + 7 = 12\) \(a = 5\) Substitute \(d = -7\) into \(a + d = 12\): \(a - 7 = 12\) \(a = 19\) Therefore, the three terms of the arithmetic sequence are 5, 12, and 19. (ii) The first term of the sequence is \(a = 172 - 5d\). Substitute \(a = 172 - 5d\) into the equation \(a + 9d = 452\): \(172 - 5d + 9d = 452\) \(4d = 280\) \(d = 70\) Substitute \(d = 70\) into \(a + 5d = 172\): \(a + 5(70) = 172\) \(a + 350 = 172\) \(a = -178\) Therefore, the general term of the sequence is \(a_n = -178 + 70(n - 1)\). (iii) The sum of the first 30 terms of the series is \(-397.5\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the arithmetic sequence problem (i), we can let the three terms be \(a - d\), \(a\), and \(a + d\). Their sum gives us \(3a = 36\) leading to \(a = 12\). The product equation leads to \((12 - d) \cdot 12 \cdot (12 + d) = 1140\). Solving this results in the three terms being \(6\), \(12\), and \(18\). For the second sequence, knowing there’s a constant second difference of 8 tells us it’s a quadratic sequence. Given that the second term can be expressed as \(T_n = An^2 + Bn + C\) where \(2A = 8\) – thus \(A = 4\). Using the known terms we can set up equations for \(A\), \(B\), and \(C\). Solving gives the general term as \(T_n = 4n^2 - 4n + 172\). The first 30 terms of the series described by \(S_n = \frac{n}{4}(7 - 2n)\) can be calculated by substituting \(n = 30\) into the formula. This gives \(S_{30} = \frac{30}{4}(7 - 60) = \frac{30}{4} \times (-53) = -397.5\). Therefore, the sum of the first 30 terms of this series is \(-397.5\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad