Pregunta
upstudy study bank question image url

A piece of climbing equipment at a playground is 6 feet high and extends 4 feet horizontally. A piece of climbing equipment at a gym is 10 feet high and extends 6 feet horizontally. Which statement best compares the slopes of the two pieces of equipment? Because \( \frac{5}{3}>\frac{3}{2} \), the slope of the climbing equipment at the gym is greater. Because \( \frac{5}{3}<\frac{3}{2} \), the slope of the climbing equipment at the playground is greater. Because \( \frac{3}{5}>\frac{2}{3} \), the slope of the climbing equipment at the gym is greater. Because \( \frac{3}{5}<\frac{2}{3} \), the slope of the climbing equipment at the playground is greater.

Ask by Willis Warren. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the climbing equipment at the gym is greater than that at the playground because \( \frac{5}{3} \) is greater than \( \frac{3}{2} \).

Solución

To compare the slopes of the two pieces of climbing equipment, we calculate the slope (rise over run) for each: 1. **Playground Equipment:** - **Height (Rise):** 6 feet - **Horizontal Extension (Run):** 4 feet - **Slope:** \( \frac{6}{4} = \frac{3}{2} \) 2. **Gym Equipment:** - **Height (Rise):** 10 feet - **Horizontal Extension (Run):** 6 feet - **Slope:** \( \frac{10}{6} = \frac{5}{3} \) Now, compare the two slopes: - \( \frac{5}{3} \) (Gym) vs. \( \frac{3}{2} \) (Playground) Convert them to decimal to make the comparison easier: - \( \frac{5}{3} \approx 1.666 \) - \( \frac{3}{2} = 1.5 \) Since \( \frac{5}{3} > \frac{3}{2} \), the slope of the climbing equipment at the gym is greater. **Answer:** Because \( \frac{5}{3}>\frac{3}{2} \), the slope of the climbing equipment at the gym is greater.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To compare the slopes of the two pieces of climbing equipment, we calculate the slope using the formula for slope, which is rise over run. For the playground equipment, the rise is 6 feet and the run is 4 feet, giving us a slope of \( \frac{6}{4} = \frac{3}{2} \). For the gym equipment, the rise is 10 feet and the run is 6 feet, resulting in a slope of \( \frac{10}{6} = \frac{5}{3} \). Since \( \frac{5}{3} > \frac{3}{2} \), the slope of the climbing equipment at the gym is, in fact, greater! How about this for a fun scenario: Imagine you and a friend are scaling these two climbing structures. In the playground, as you climb that 6-foot-high structure, the view is charming but slightly less exhilarating. Then, transitioning to the gym's 10-foot height, you get a rush of adrenaline! It's not just about who's higher, but also the angle—steeper slopes mean more thrill on the way up (and possibly on the way down too!).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad