Pregunta
upstudy study bank question image url

Determine whether the following pair of lines is parallel, intersects at a single point, or is skew. If the lines are parallel, determine whether they are the same line (and thus intersect at all points). If the lines intersect at a single point, determine the point of intersection. \( x=2, y=7-t, z=1+t \) and \( x=-5-7 s, y=1+4 s, z=5-s \) Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice. A. The lines intersect at the single point (Simplify your answers.) B. The lines intersect at all points on the line \( r(t) \). C. The lines are parallel. D. The lines are skew.

Ask by Bradley Tran. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The lines are skew.

Solución

To determine the relationship between the two lines: **First Line:** \[ x = 2, \quad y = 7 - t, \quad z = 1 + t \] This can be written in vector form as: \[ \mathbf{r}(t) = (2, 7, 1) + t(0, -1, 1) \] **Direction Vector:** \(\mathbf{d}_1 = (0, -1, 1)\) **Second Line:** \[ x = -5 - 7s, \quad y = 1 + 4s, \quad z = 5 - s \] This can be written in vector form as: \[ \mathbf{s}(s) = (-5, 1, 5) + s(-7, 4, -1) \] **Direction Vector:** \(\mathbf{d}_2 = (-7, 4, -1)\) **Step 1: Check for Parallelism** Two lines are parallel if their direction vectors are scalar multiples of each other. Check if there exists a scalar \(\lambda\) such that: \[ (0, -1, 1) = \lambda(-7, 4, -1) \] Equating components: \[ 0 = -7\lambda \quad \Rightarrow \quad \lambda = 0 \\ -1 = 4\lambda \quad \Rightarrow \quad \lambda = -\frac{1}{4} \\ 1 = -\lambda \quad \Rightarrow \quad \lambda = -1 \] The values of \(\lambda\) are inconsistent, so the lines are not parallel. **Step 2: Check for Intersection** Solve the system of equations to find if there's a common point: \[ \begin{cases} 2 = -5 - 7s \\ 7 - t = 1 + 4s \\ 1 + t = 5 - s \end{cases} \] From the first equation: \[ 2 = -5 - 7s \quad \Rightarrow \quad 7s = -7 \quad \Rightarrow \quad s = -1 \] Substitute \(s = -1\) into the second equation: \[ 7 - t = 1 + 4(-1) \quad \Rightarrow \quad 7 - t = -3 \quad \Rightarrow \quad t = 10 \] Substitute \(s = -1\) and \(t = 10\) into the third equation: \[ 1 + 10 = 5 - (-1) \quad \Rightarrow \quad 11 \neq 6 \] This inconsistency means there is no common point of intersection. **Conclusion:** Since the lines are neither parallel nor intersecting, they are **skew**. **Answer:** **D. The lines are skew.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the relationship between the two lines given in parametric form, we start by expressing each line. 1. **First Line:** It's given in the form: \( x = 2 \) \( y = 7 - t \) \( z = 1 + t \) This line can also be represented using a parameter \( t \), which dictates the position along the line. 2. **Second Line:** This line is expressed as: \( x = -5 - 7s \) \( y = 1 + 4s \) \( z = 5 - s \) Similarly, it can be represented using a parameter \( s \). Next, we look for a common point of intersection. We need to set the coordinates equal for both lines: - For \( x \): \( 2 = -5 - 7s \) Solve for \( s \): \( 7s = -7 \) \( s = -1 \) - Now plug \( s = -1 \) into the equations for the second line: \( y = 1 + 4(-1) = 1 - 4 = -3 \) \( z = 5 - (-1) = 5 + 1 = 6 \) This gives us the point \( (-5, -3, 6) \). - Now check this point against the first line using the originally found \( t \): Plugging \( x = 2 \), we look for the corresponding \( t \), which doesn't match, indicating that there is no corresponding \( (-5, -3, 6) \) for the first line. Next, for \( y \) and \( z \), we would find the parameter \( t \) that gives us these values: - For \( y \): From line one \( y = 7 - t \): Set as: \( 7 - t = -3 \) This gives: \( t = 10 \) - Plugging \( t = 10 \) into the first line’s \( z \) gives: \( z = 1 + 10 = 11 \), but the second line gave us \( z = 6 \). Since there are no common solutions, we conclude that these two lines do not intersect and are not parallel. Thus, the correct option is: **D. The lines are skew.**

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad