Pregunta
upstudy study bank question image url

Find an equation of the line where the planes \( Q \) and \( R \) intersect. Q: \( -2 x-3 y+4 z=1 \); \( R: x+y+z=1 \) Choose the correct answer below. A. An equation of the line is given by \( x=-\frac{1}{3}-3 t, y=-2 t, z=\frac{1}{4}+4 t \), where \( -\infty
Ask by Owen Ingram. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line where planes \( Q \) and \( R \) intersect is: \[ x = 4 - 7t, \quad y = -3 + 6t, \quad z = t \] where \( t \) is any real number.

Solución

To find the equation of the line where the planes \( Q \) and \( R \) intersect, we'll follow these steps: 1. **Identify the Equations of the Planes:** - Plane \( Q \): \( -2x - 3y + 4z = 1 \) - Plane \( R \): \( x + y + z = 1 \) 2. **Find the Direction Vector of the Line:** The direction vector \( \mathbf{v} \) of the intersection line is perpendicular to the normals of both planes. The normal vectors are: - \( \mathbf{n}_Q = (-2, -3, 4) \) - \( \mathbf{n}_R = (1, 1, 1) \) The direction vector \( \mathbf{v} \) is given by the cross product \( \mathbf{n}_Q \times \mathbf{n}_R \): \[ \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & -3 & 4 \\ 1 & 1 & 1 \\ \end{vmatrix} = (-7, 6, 1) \] 3. **Find a Point on the Line:** Solve the system of equations to find a specific point on both planes. Let's set \( z = 0 \): \[ \begin{cases} -2x - 3y = 1 \\ x + y = 1 \\ \end{cases} \] Solving these equations: - From the second equation: \( y = 1 - x \) - Substitute into the first equation: \[ -2x - 3(1 - x) = 1 \implies -2x - 3 + 3x = 1 \implies x = 4 \] - Then \( y = 1 - 4 = -3 \) So, one point on the line is \( (4, -3, 0) \). 4. **Write the Parametric Equations of the Line:** Using the direction vector and the point: \[ \begin{cases} x = 4 - 7t \\ y = -3 + 6t \\ z = t \\ \end{cases} \quad \text{where} \quad t \in \mathbb{R} \] **Therefore, the correct answer is:** **C. An equation of the line is given by \( x = 4 - 7 t \), \( y = -3 + 6 t \), \( z = t \), where \( -\infty < t < \infty \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the intersection of the planes \( Q \) and \( R \), we can solve the system of equations formed by these planes. The planes intersect in a line, which can be represented parametrically. By eliminating one variable and expressing the others in terms of a parameter \( t \), we determine specific forms of \( x, y, z \). In terms of real-world application, the intersection of planes can represent the trajectory of objects in physics or engineering, such as the path of a missile or other projectiles that follow a certain trajectory determined by their initial conditions, impacted by multiple surfaces in their environment. For further reading, you might want to explore the concept of parametric equations and the geometry of lines and planes in 3D space. Understanding these topics can open doors to deeper insights into fields like computer graphics, robotics, and simulations, where spatial reasoning is key!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad