Pregunta
upstudy study bank question image url

he bank offers a rate of \( 11 \% \), compoundec continuously, on any deposit that will not be removed for a minimum of 20 years. If you invest \( \$ 10,000 \) with the bank, how much money can you expect to have in the account after 20 years?

Ask by Cook Savage. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 20 years, you can expect to have approximately \$90,250 in your account.

Solución

To determine how much money you'll have in your account after 20 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P \times e^{rt} \] Where: - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = the principal amount (\$10,000). - \( r \) = annual interest rate (11% or 0.11). - \( t \) = time the money is invested for (20 years). - \( e \) = the base of the natural logarithm (approximately 2.71828). Plugging in the values: \[ A = 10,000 \times e^{0.11 \times 20} \] \[ A = 10,000 \times e^{2.2} \] Calculating \( e^{2.2} \): \[ e^{2.2} \approx 9.0250135 \] Now, multiply this by the principal: \[ A \approx 10,000 \times 9.0250135 = 90,250.135 \] **So, after 20 years, you can expect to have approximately \$90,250 in your account.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the future value of an investment with continuous compounding, you can use the formula: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (decimal), and - \( t \) is the time the money is invested for, in years. In this case: - \( P = 10,000 \), - \( r = 0.11 \) (11% expressed as a decimal), - \( t = 20 \). Plugging in the values: \[ A = 10000 \times e^{(0.11 \times 20)} = 10000 \times e^{2.2} \] Using \( e^{2.2} \approx 9.025 \): \[ A \approx 10000 \times 9.025 \approx 90250 \] So, after 20 years, you can expect to have approximately \( \$ 90,250 \) in your account. Happy saving! 🎉💰

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad