Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 98 and standard deviation 17 . What is the probability that \( X \) is between 47 and 81 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Horton George. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 47 and 81 is approximately 0.157.

Solución

To determine the probability that \( X \) is between 47 and 81 for a normally distributed random variable \( X \) with mean \( \mu = 98 \) and standard deviation \( \sigma = 17 \), we'll use the \( 0.68-0.95-0.997 \) empirical rule. ### Step 1: Calculate Z-scores First, convert the values 47 and 81 to their corresponding Z-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 47 \): \[ Z_1 = \frac{47 - 98}{17} = \frac{-51}{17} = -3 \] - For \( X = 81 \): \[ Z_2 = \frac{81 - 98}{17} = \frac{-17}{17} = -1 \] ### Step 2: Determine Probabilities Using the Empirical Rule The empirical rule tells us: - Approximately **68%** of the data lies within **±1σ** of the mean. - Approximately **95%** within **±2σ**. - Approximately **99.7%** within **±3σ**. However, we are interested in the probability between **-3σ** and **-1σ**. Using standard normal distribution tables or properties: - \( P(Z \leq -1) \approx 0.1587 \) - \( P(Z \leq -3) \approx 0.00135 \) Thus, the probability between \( Z = -3 \) and \( Z = -1 \) is: \[ P(-3 \leq Z \leq -1) = P(Z \leq -1) - P(Z \leq -3) \approx 0.1587 - 0.00135 = 0.15735 \] Rounding to the nearest thousandth: \[ P(47 \leq X \leq 81) \approx 0.157 \] **Answer:** The probability is approximately 0.157.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 47 and 81 given that \( X \) is normally distributed with a mean of 98 and a standard deviation of 17, we can start by calculating the z-scores for both values: For \( X = 47 \): \[ z = \frac{(47 - 98)}{17} \approx \frac{-51}{17} \approx -3 \] For \( X = 81 \): \[ z = \frac{(81 - 98)}{17} \approx \frac{-17}{17} \approx -1 \] Next, we'll use the empirical rule (or \( 0.68-0.95-0.997 \) rule) to find the probabilities associated with these z-scores: - For \( z = -3 \): This is approximately \( 0.13\%\) in the left tail, so over the entire distribution, we’re looking at a very tiny amount. - For \( z = -1 \): This corresponds to around \( 15.87\%\) in the left tail, meaning about \( 84.13\%\) of data lies above it. Now, the probability that \( X \) is between 47 and 81 is roughly the difference between the cumulative probability for \( z = -1 \) and \( z = -3 \): \[ P(47 < X < 81) \approx P(Z < -1) - P(Z < -3) \approx 0.8413 - 0.0013 \approx 0.8400. \] Thus, rounding to the nearest thousandth, the probability is approximately \( 0.840 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad