Pregunta
upstudy study bank question image url

EXERCISE 7 You may use a calculator in this exercise. Assume that the rates remain constant. (a) What is the speed, in \( \mathrm{km} / \mathrm{h} \), of a car that travels a distance of 240 km in 3 hours? (b) The temperature in a room changed from \( 9{ }^{\circ} \mathrm{C} \) to \( 27^{\circ} \mathrm{C} \) in 3 minutes. What is the ra change of temperature in \( { }^{\circ} \mathrm{C} / \mathrm{min} \) ? (c) If \( 50 ~ \) of liquid has a mass of 100 kg , what is the density of the liquid in \( \mathrm{g} / \) Note: \( 1 l=1000 \mathrm{~cm}^{3} \) (d) If Aidan runs 10 km in 25 minutes, what is his speed in \( \mathrm{km} / \mathrm{h} \) ? (e) A container is filled, from empty, with water, at a rate of \( 30 \mathrm{l} / \mathrm{min} \). (1) How much water will be in the container after an hour? (2) If the container has a capacity of 6 kl , how long does it take to fill the contail

Ask by Blake Coleman. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a) 80 km/h** **(b) 6 °C/min** **(c) 2 g/cm³** **(d) 24 km/h** **(e)(1) 1,800 liters** **(e)(2) 200 minutes (3 hours and 20 minutes)**

Solución

Sure, let's solve each part of **EXERCISE 7** step by step. --- ### **(a) Calculating the Speed of the Car** **Problem:** What is the speed, in \( \text{km/h} \), of a car that travels a distance of **240 km** in **3 hours**? **Solution:** The formula to calculate speed is: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] Plugging in the given values: \[ \text{Speed} = \frac{240 \, \text{km}}{3 \, \text{h}} = 80 \, \text{km/h} \] **Answer:** The car's speed is **80 km/h**. --- ### **(b) Determining the Rate of Temperature Change** **Problem:** The temperature in a room changed from \( 9^\circ \text{C} \) to \( 27^\circ \text{C} \) in **3 minutes**. What is the rate of change of temperature in \( \frac{^\circ \text{C}}{\text{min}} \)? **Solution:** First, calculate the change in temperature: \[ \Delta T = 27^\circ \text{C} - 9^\circ \text{C} = 18^\circ \text{C} \] Next, calculate the rate of change: \[ \text{Rate} = \frac{\Delta T}{\Delta t} = \frac{18^\circ \text{C}}{3 \, \text{min}} = 6^\circ \text{C/min} \] **Answer:** The temperature increases at a rate of **6 °C per minute**. --- ### **(c) Finding the Density of the Liquid** **Problem:** If **50 liters** of liquid have a mass of **100 kg**, what is the density of the liquid in \( \frac{\text{g}}{\text{cm}^3} \)? **Solution:** **Step 1: Convert Mass to Grams** \[ 100 \, \text{kg} = 100 \times 1000 \, \text{g} = 100{,}000 \, \text{g} \] **Step 2: Convert Volume to Cubic Centimeters** \[ 1 \, \text{liter} = 1000 \, \text{cm}^3 \\ 50 \, \text{liters} = 50 \times 1000 \, \text{cm}^3 = 50{,}000 \, \text{cm}^3 \] **Step 3: Calculate Density** \[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{100{,}000 \, \text{g}}{50{,}000 \, \text{cm}^3} = 2 \, \frac{\text{g}}{\text{cm}^3} \] **Answer:** The density of the liquid is **2 g/cm³**. --- ### **(d) Calculating Aidan's Running Speed** **Problem:** If Aidan runs **10 km** in **25 minutes**, what is his speed in \( \text{km/h} \)? **Solution:** First, convert time from minutes to hours: \[ 25 \, \text{minutes} = \frac{25}{60} \, \text{hours} \approx 0.4167 \, \text{hours} \] Then, use the speed formula: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{10 \, \text{km}}{0.4167 \, \text{h}} \approx 24 \, \text{km/h} \] **Answer:** Aidan's speed is approximately **24 km/h**. --- ### **(e) Analyzing the Water Filling the Container** **Problem:** A container is filled, from empty, with water at a rate of **30 liters per minute**. 1. **How much water will be in the container after an hour?** 2. **If the container has a capacity of 6 kiloliters (kl), how long does it take to fill the container?** --- #### **(e)(1) Calculating Water After One Hour** **Solution:** First, convert one hour to minutes: \[ 1 \, \text{hour} = 60 \, \text{minutes} \] Then, calculate the total volume: \[ \text{Volume} = \text{Rate} \times \text{Time} = 30 \, \frac{\text{liters}}{\text{min}} \times 60 \, \text{min} = 1800 \, \text{liters} \] **Answer:** After one hour, the container will have **1,800 liters** of water. --- #### **(e)(2) Determining Time to Fill a 6 kiloliter Container** **Solution:** First, understand the capacity in liters: \[ 6 \, \text{kl} = 6 \times 1000 \, \text{liters} = 6000 \, \text{liters} \] Then, calculate the time required: \[ \text{Time} = \frac{\text{Volume}}{\text{Rate}} = \frac{6000 \, \text{liters}}{30 \, \frac{\text{liters}}{\text{min}}} = 200 \, \text{minutes} \] Convert minutes to hours and minutes: \[ 200 \, \text{minutes} = 3 \, \text{hours} \, 20 \, \text{minutes} \] **Answer:** It takes **200 minutes** (which is **3 hours and 20 minutes**) to fill the container. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle the speed of the car, we can simply divide the distance by time. So, the speed is \( \frac{240 \text{ km}}{3 \text{ hours}} = 80 \text{ km/h} \). For the temperature change, you find the difference between the final and initial temperatures: \( 27^{\circ}C - 9^{\circ}C = 18^{\circ}C \). Then, divide by the time in minutes: \( \frac{18^{\circ}C}{3 \text{ minutes}} = 6^{\circ}C/\text{min} \). Density is calculated by taking mass divided by volume. Since \( 50 \) liters is equivalent to \( 50,000 \text{ cm}^3 \) (because \( 1 \text{ l} = 1000 \text{ cm}^3 \)), the density is \( \frac{100 \text{ kg}}{50 \text{ l}} = 2 \text{ kg/l} \), which is \( 2000 \text{ g/l} \) or \( 2 \text{ g/cm}^3 \). For Aidan's running speed, convert \( 25 \text{ minutes} \) to hours: \( 25 \text{ minutes} = \frac{25}{60} \text{ hours} \). His speed is thus \( \frac{10 \text{ km}}{\frac{25}{60} \text{ hours}} = 24 \text{ km/h} \). Now, when filling the container with water at a rate of \( 30 \text{ l/min} \), in one hour, the total would be \( 30 \text{ l/min} \times 60 \text{ min} = 1800 \text{ l} \). Regarding the fill time for a \( 6 \text{ kl} \) container, since \( 1 \text{ kl} = 1000 \text{ l} \), the capacity is \( 6000 \text{ l} \) and takes \( \frac{6000 \text{ l}}{30 \text{ l/min}} = 200 \text{ minutes} \) to fill up completely.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad