(d) Determine (by showing all the steps) the equilibrium point(s) of the below differential equation, by strictly using an analytical approach (4 marks penalty if inspection is used). \[ \frac{d y}{d t}=-65-2\left(\sqrt{y^{3}-1}\right)^{-1}+3\left(\sqrt{y^{3}-1}\right)^{-1} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equilibrium point(s) of the given differential equation \[ \frac{d y}{d t} = -65 - 2\left(\sqrt{y^{3}-1}\right)^{-1} + 3\left(\sqrt{y^{3}-1}\right)^{-1}, \] we start by setting the right-hand side equal to zero: \[ 0 = -65 - 2\left(\sqrt{y^{3}-1}\right)^{-1} + 3\left(\sqrt{y^{3}-1}\right)^{-1}. \] This simplifies to: \[ 0 = -65 + \left(\sqrt{y^{3}-1}\right)^{-1}. \] Rearranging gives us: \[ \left(\sqrt{y^{3}-1}\right)^{-1} = 65. \] Taking the reciprocal, we obtain: \[ \sqrt{y^{3}-1} = \frac{1}{65}. \] Next, we square both sides: \[ y^{3} - 1 = \left(\frac{1}{65}\right)^{2}. \] Calculating \(\left(\frac{1}{65}\right)^{2}\): \[ y^{3} - 1 = \frac{1}{4225}. \] Adding 1 to both sides provides: \[ y^{3} = 1 + \frac{1}{4225} = \frac{4225 + 1}{4225} = \frac{4226}{4225}. \] Taking the cube root of both sides gives us the equilibrium point: \[ y = \sqrt[3]{\frac{4226}{4225}}. \] This is the analytical process to find the equilibrium point(s).