Pregunta
upstudy study bank question image url

4) Find the equation of the tangent line to the graph of \( 8 y^{4}+8 x y^{24}+6 x^{3}-64=8 y^{2} \) at \( (2,-1) \).

Ask by Goodwin Boone. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the tangent line at the point (2, -1) is \( y = \frac{1}{5}x - \frac{7}{5} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To find the equation of the tangent line, we first need to compute the derivative of the implicit function defined by the equation \(8 y^{4} + 8 x y^{24} + 6 x^{3} - 64 = 8 y^{2}\). We can use implicit differentiation. Differentiating both sides with respect to \(x\): \[ 32y^{3} \frac{dy}{dx} + 8(y^{24} + 24xy^{23} \frac{dy}{dx}) + 18x^{2} = 16y \frac{dy}{dx} \] Now, substitute \( x = 2 \) and \( y = -1 \): 1. Calculate \( 32(-1)^{3} \frac{dy}{dx} + 8((-1)^{24} + 24(2)(-1)^{23} \frac{dy}{dx}) + 18(2)^{2} - 16(-1) \frac{dy}{dx} = 0 \). 2. This results in \( -32 \frac{dy}{dx} + 8(1 - 48 \frac{dy}{dx}) + 72 + 16 \frac{dy}{dx} = 0 \). 3. Combining similar terms gives us \( -32 \frac{dy}{dx} - 384 \frac{dy}{dx} + 72 + 0 = 0 \). 4. Set \( \frac{dy}{dx}(-(32 + 384)) + 72 = 0 \) and solve for \( \frac{dy}{dx} \). After simplifying, we find \( \frac{dy}{dx} = -\frac{72}{416} = -\frac{9}{52} \). Now use the point-slope form of the equation of the tangent line at the point \( (2, -1) \): \[ y - (-1) = -\frac{9}{52}(x - 2) \] Thus, the equation of the tangent line is: \[ y + 1 = -\frac{9}{52}x + \frac{18}{52} \implies y = -\frac{9}{52}x + \frac{18}{52} - 1 \implies y = -\frac{9}{52}x - \frac{34}{52} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad