4) Find the equation of the tangent line to the graph of \( 8 y^{4}+8 x y^{24}+6 x^{3}-64=8 y^{2} \) at \( (2,-1) \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the equation of the tangent line, we first need to compute the derivative of the implicit function defined by the equation \(8 y^{4} + 8 x y^{24} + 6 x^{3} - 64 = 8 y^{2}\). We can use implicit differentiation. Differentiating both sides with respect to \(x\): \[ 32y^{3} \frac{dy}{dx} + 8(y^{24} + 24xy^{23} \frac{dy}{dx}) + 18x^{2} = 16y \frac{dy}{dx} \] Now, substitute \( x = 2 \) and \( y = -1 \): 1. Calculate \( 32(-1)^{3} \frac{dy}{dx} + 8((-1)^{24} + 24(2)(-1)^{23} \frac{dy}{dx}) + 18(2)^{2} - 16(-1) \frac{dy}{dx} = 0 \). 2. This results in \( -32 \frac{dy}{dx} + 8(1 - 48 \frac{dy}{dx}) + 72 + 16 \frac{dy}{dx} = 0 \). 3. Combining similar terms gives us \( -32 \frac{dy}{dx} - 384 \frac{dy}{dx} + 72 + 0 = 0 \). 4. Set \( \frac{dy}{dx}(-(32 + 384)) + 72 = 0 \) and solve for \( \frac{dy}{dx} \). After simplifying, we find \( \frac{dy}{dx} = -\frac{72}{416} = -\frac{9}{52} \). Now use the point-slope form of the equation of the tangent line at the point \( (2, -1) \): \[ y - (-1) = -\frac{9}{52}(x - 2) \] Thus, the equation of the tangent line is: \[ y + 1 = -\frac{9}{52}x + \frac{18}{52} \implies y = -\frac{9}{52}x + \frac{18}{52} - 1 \implies y = -\frac{9}{52}x - \frac{34}{52} \]