Pregunta
upstudy study bank question image url

(c) Determine the general solution for the differential equation, \[ \frac{d r}{d s}=\frac{s r+2 r-s-2}{s r-3 r+s-3} \]

Ask by Johnston Wells. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general solution to the differential equation is: \[ r + 2 \ln(r - 1) = s + 5 \ln(s - 3) + C \] where \( C \) is the constant of integration.

Solución

To determine the general solution for the differential equation: \[ \frac{dr}{ds} = \frac{s r + 2 r - s - 2}{s r - 3 r + s - 3} \] we can follow these steps: ### 1. Simplify the Equation First, let's simplify both the numerator and the denominator: **Numerator:** \[ s r + 2 r - s - 2 = r(s + 2) - (s + 2) = (s + 2)(r - 1) \] **Denominator:** \[ s r - 3 r + s - 3 = r(s - 3) + (s - 3) = (s - 3)(r + 1) \] So, the differential equation becomes: \[ \frac{dr}{ds} = \frac{(s + 2)(r - 1)}{(s - 3)(r + 1)} \] ### 2. Separate Variables We can rearrange the equation to separate the variables \( r \) and \( s \): \[ \frac{(r + 1)}{(r - 1)} dr = \frac{(s + 2)}{(s - 3)} ds \] ### 3. Integrate Both Sides Now, integrate both sides: **Left Side:** \[ \int \frac{(r + 1)}{(r - 1)} dr = \int \left(1 + \frac{2}{r - 1}\right) dr = r + 2 \ln|r - 1| \] **Right Side:** \[ \int \frac{(s + 2)}{(s - 3)} ds = \int \left(1 + \frac{5}{s - 3}\right) ds = s + 5 \ln|s - 3| \] ### 4. Combine Results Combining the integrals, we get the implicit general solution: \[ r + 2 \ln|r - 1| = s + 5 \ln|s - 3| + C \] where \( C \) is the constant of integration. ### Final Answer After simplifying, an implicit general solution is r + 2 ln(r – 1) equals s plus five ln(s – 3) plus a constant. Thus, r + 2 ln(r−1) = s + 5 ln(s−3) + C

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the differential equation \[ \frac{d r}{d s}=\frac{s r+2 r-s-2}{s r-3 r+s-3}, \] we can start by rewriting it in a more manageable form. Notice that both the numerator and denominator can be factored or rearranged. After some manipulation, we can express it as: \[ \frac{d r}{d s} = \frac{(s + 2)r - (s + 2)}{(s - 3)r + (s - 3)}. \] From here, it's helpful to separate the variables. If we can isolate \( r \) and \( s \), we can integrate both sides accordingly. The next step is to cross-multiply and rearrange: \[ (s r - 3 r + s - 3) \frac{d r}{d s} = (s + 2)r - (s + 2). \] Expanding and simplifying gives us a clearer equation, leading to the characteristic form of: \[ \frac{(s+2)r - (s+2)}{(s-3)r + (s-3)} = \frac{d r}{d s}. \] At this point, you can integrate both sides with respect to \( s \), which might lead you to a logarithmic solution or an implicit function relating \( r \) and \( s \). Ultimately, the solution will likely involve constants of integration, leading to the general solution for \( r \) in terms of \( s \). Remember to check for any specific values that could cause undefined conditions, such as division by zero. This differential equation certainly puts your algebraic skill to the test! Solving it can reveal rich connections between \( r \) and \( s \) that are vital in fields like physics or economics.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad