Pregunta
upstudy study bank question image url

\begin{tabular}{l|l|l} Compound Interest with "Messy" Terms \\ Find the future value of the given amount of money, assuming interest & 9 & Numeric 1 point \\ compounds at the stated interest rate and compounding frequency for & \( \$ 1,115.79 \) at \( 2 \frac{3}{8} \% \) compounded daily (bankers rule) for 4 years, 7 \\ the given period of time. & months, and 15 days. \end{tabular}

Ask by Schofield Franklin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The future value is approximately \$1,244.34.

Solución

To find the future value \( FV \) of an investment compounded daily, we'll use the compound interest formula: \[ FV = PV \times \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( PV \) is the present value (\$1,115.79) - \( r \) is the annual interest rate (2 \(\frac{3}{8}\)% or 2.375%) - \( n \) is the number of compounding periods per year (daily compounding means \( n = 365 \)) - \( t \) is the time in years (4 years, 7 months, and 15 days) ### Step 1: Convert the Time Period to Years \[ t = 4 + \frac{7}{12} + \frac{15}{365} \approx 4 + 0.5833 + 0.0411 = 4.6244 \text{ years} \] ### Step 2: Plug Values into the Formula \[ FV = 1115.79 \times \left(1 + \frac{0.02375}{365}\right)^{365 \times 4.6244} \] ### Step 3: Calculate the Compound Factor \[ \left(1 + \frac{0.02375}{365}\right)^{1687.666} \approx e^{0.02375 \times 4.6244} \approx e^{0.109596} \approx 1.115888 \] ### Step 4: Compute the Future Value \[ FV \approx 1115.79 \times 1.115888 \approx 1244.34 \] \**Final Answer:**\ The future value is approximately **\$1,244.34**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the future value using the compound interest formula \( A = P(1 + \frac{r}{n})^{nt} \), we need to first convert the mixed interest rate into a decimal and calculate the number of compounding periods. The interest rate \( 2 \frac{3}{8} \% \) converts to \( 2.375\% \) or \( 0.02375 \) in decimal form. Next, the total time in years is calculated as \( 4 + \frac{7}{12} + \frac{15}{365} \), which approximately equals \( 4.634 \) years. The daily compounding frequency means \( n = 365 \). Plugging in the values: \[ A = 1115.79 \left( 1 + \frac{0.02375}{365} \right)^{365 \times 4.634} \] Calculating this gives the future value approximately equal to \( A \) which you can compute using a calculator for precise results! To ace this compound interest calculation, keep an eye out for those pesky fractional representations in interest rates! Round them off carefully; a small miscalculation could lead to an unexpected future value! Also, double-check how you calculate time in years—combine years, months, and days accurately. Ready for more brain sweets on compound interest? Dive into "The Basics of Financial Mathematics" that'll serve your concepts strong and solid! You might also enjoy "A Random Walk Down Wall Street," where you'll discover intriguing financial theories that can boost your understanding beyond just the formulas. Happy reading!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad