Pregunta
upstudy study bank question image url

III. If 7 cards are dealt from an ordinary deck of 52 playing cards, what is the probability that e be face cards? Ans. \( \quad n=\binom{52}{7}=133784560 \)

Ask by Rowe Dawson. in Pakistan
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of drawing 7 face cards from a deck of 52 playing cards is approximately \(5.92 \times 10^{-6}\) or \(\frac{99}{16723070}\).

Solución

To find the probability of drawing 7 face cards from a deck of 52 playing cards, we first need to determine the total number of ways to draw 7 cards from the deck and then find the number of ways to draw 7 face cards. Given: - Total number of cards in the deck = 52 - Number of face cards in the deck = 12 (since there are 4 suits with 3 face cards each) 1. Calculate the total number of ways to draw 7 cards from the deck: \[ \text{Total ways} = \binom{52}{7} \] 2. Calculate the number of ways to draw 7 face cards from the deck: \[ \text{Ways to draw 7 face cards} = \binom{12}{7} \] 3. Calculate the probability of drawing 7 face cards: \[ \text{Probability} = \frac{\text{Ways to draw 7 face cards}}{\text{Total ways}} \] Let's calculate the values: Calculate the value by following steps: - step0: Calculate: \( { }_{52}C_{7}\) - step1: Expand the expression: \(\frac{52!}{7!\times \left(52-7\right)!}\) - step2: Subtract the numbers: \(\frac{52!}{7!\times 45!}\) - step3: Calculate: \(\frac{52!}{5040\times 45!}\) - step4: Factor the expression: \(\frac{52\times 51\times 50\times 49\times 48\times 47\times 46\times 45!}{5040\times 45!}\) - step5: Reduce the fraction: \(13\times 17\times 5\times 7\times 8\times 47\times 46\) - step6: Multiply the terms: \(221\times 5\times 7\times 8\times 47\times 46\) - step7: Multiply the terms: \(1105\times 7\times 8\times 47\times 46\) - step8: Multiply the terms: \(7735\times 8\times 47\times 46\) - step9: Multiply the terms: \(61880\times 47\times 46\) - step10: Multiply the terms: \(2908360\times 46\) - step11: Multiply the numbers: \(133784560\) Calculate or simplify the expression \( \binom{12}{7} \). Calculate the value by following steps: - step0: Calculate: \( { }_{12}C_{7}\) - step1: Expand the expression: \(\frac{12!}{7!\times \left(12-7\right)!}\) - step2: Subtract the numbers: \(\frac{12!}{7!\times 5!}\) - step3: Expand the expression: \(\frac{12\times 11\times 10\times 9\times 8\times 7!}{7!\times 5!}\) - step4: Simplify: \(\frac{12\times 11\times 10\times 9\times 8}{5!}\) - step5: Multiply: \(\frac{95040}{5!}\) - step6: Calculate the value: \(\frac{95040}{120}\) - step7: Reduce the fraction: \(792\) Calculate or simplify the expression \( \frac{792}{133784560} \). Calculate the value by following steps: - step0: Calculate: \(\frac{792}{133784560}\) - step1: Reduce the fraction: \(\frac{99}{16723070}\) The probability of drawing 7 face cards from a deck of 52 playing cards is approximately \(5.919966 \times 10^{-6}\) or \(\frac{99}{16723070}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that a standard deck of cards has 12 face cards (Jack, Queen, and King of each suit)? That's right! When calculating probabilities involving face cards, the key is understanding the composition of your deck. So, if you're drawing cards and want to grab more than your fair share of these glamorous figures, keep in mind the odds are a bit tricky due to their limited numbers compared to the total 52 cards! Now, if you're wondering how to calculate the probability of drawing exactly 3 face cards from a 7-card hand, first you would choose 3 face cards from the 12, and 4 non-face cards from the 40 remaining cards. This involves combinations, and you can combine these results to uncover the juicy probability behind your card game strategy! Remember, a little math goes a long way to mastering your hand!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad