Responder
The probability of drawing 7 face cards from a deck of 52 playing cards is approximately \(5.92 \times 10^{-6}\) or \(\frac{99}{16723070}\).
Solución
To find the probability of drawing 7 face cards from a deck of 52 playing cards, we first need to determine the total number of ways to draw 7 cards from the deck and then find the number of ways to draw 7 face cards.
Given:
- Total number of cards in the deck = 52
- Number of face cards in the deck = 12 (since there are 4 suits with 3 face cards each)
1. Calculate the total number of ways to draw 7 cards from the deck:
\[ \text{Total ways} = \binom{52}{7} \]
2. Calculate the number of ways to draw 7 face cards from the deck:
\[ \text{Ways to draw 7 face cards} = \binom{12}{7} \]
3. Calculate the probability of drawing 7 face cards:
\[ \text{Probability} = \frac{\text{Ways to draw 7 face cards}}{\text{Total ways}} \]
Let's calculate the values:
Calculate the value by following steps:
- step0: Calculate:
\( { }_{52}C_{7}\)
- step1: Expand the expression:
\(\frac{52!}{7!\times \left(52-7\right)!}\)
- step2: Subtract the numbers:
\(\frac{52!}{7!\times 45!}\)
- step3: Calculate:
\(\frac{52!}{5040\times 45!}\)
- step4: Factor the expression:
\(\frac{52\times 51\times 50\times 49\times 48\times 47\times 46\times 45!}{5040\times 45!}\)
- step5: Reduce the fraction:
\(13\times 17\times 5\times 7\times 8\times 47\times 46\)
- step6: Multiply the terms:
\(221\times 5\times 7\times 8\times 47\times 46\)
- step7: Multiply the terms:
\(1105\times 7\times 8\times 47\times 46\)
- step8: Multiply the terms:
\(7735\times 8\times 47\times 46\)
- step9: Multiply the terms:
\(61880\times 47\times 46\)
- step10: Multiply the terms:
\(2908360\times 46\)
- step11: Multiply the numbers:
\(133784560\)
Calculate or simplify the expression \( \binom{12}{7} \).
Calculate the value by following steps:
- step0: Calculate:
\( { }_{12}C_{7}\)
- step1: Expand the expression:
\(\frac{12!}{7!\times \left(12-7\right)!}\)
- step2: Subtract the numbers:
\(\frac{12!}{7!\times 5!}\)
- step3: Expand the expression:
\(\frac{12\times 11\times 10\times 9\times 8\times 7!}{7!\times 5!}\)
- step4: Simplify:
\(\frac{12\times 11\times 10\times 9\times 8}{5!}\)
- step5: Multiply:
\(\frac{95040}{5!}\)
- step6: Calculate the value:
\(\frac{95040}{120}\)
- step7: Reduce the fraction:
\(792\)
Calculate or simplify the expression \( \frac{792}{133784560} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{792}{133784560}\)
- step1: Reduce the fraction:
\(\frac{99}{16723070}\)
The probability of drawing 7 face cards from a deck of 52 playing cards is approximately \(5.919966 \times 10^{-6}\) or \(\frac{99}{16723070}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución